
Program Repair Guided by Datalog-Defined Static Analysis
Yu Liu

National University of Singapore
Singapore

liuyu@comp.nus.edu.sg

Sergey Mechtaev∗
University College London

United Kingdom
s.mechtaev@ucl.ac.uk

Pavle Subotić
Microsoft
Serbia

pavlesubotic@microsoft.com

Abhik Roychoudhury
National University of Singapore

Singapore
abhik@comp.nus.edu.sg

ABSTRACT
Automated program repair relying on static analysis complements
test-driven repair, since it does not require failing tests to repair a
bug, and it avoids test-overfitting by considering program proper-
ties. Due to the rich variety and complexity of program analyses,
existing static program repair techniques are tied to specific anal-
ysers, and thus repair only narrow classes of defects. To develop
a general-purpose static program repair framework that targets a
wide range of properties and programming languages, we propose
to integrate program repair with Datalog-based analysis. Datalog
solvers are programmable fixed point engines which can be used to
encode many program analysis problems in a modular fashion. The
program under analysis is encoded as Datalog facts, while the fixed
point equations of the program analysis are expressed as recursive
Datalog rules. In this context, we view repairing the program as
modifying the corresponding Datalog facts. This is accomplished
by a novel technique, symbolic execution of Datalog, that evalu-
ates Datalog queries over a symbolic database of facts, instead of
a concrete set of facts. The result of symbolic query evaluation
allows us to infer what changes to a given set of Datalog facts
repair the program so that it meets the desired analysis goals. We
developed a symbolic executor for Datalog called Symlog, on top
of which we built a repair tool SymlogRepair. We show the versatil-
ity of our approach on several analysis problems — repairing null
pointer exceptions in Java programs, repairing data leaks in Python
notebooks, and repairing four types of security vulnerabilities in
Solidity smart contracts.

CCS CONCEPTS
• Software and its engineering→ Automatic programming;
Automated static analysis; • Theory of computation → Con-
straint and logic programming; • Information systems →
Query languages.

∗Corresponding author

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA
© 2023 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0327-0/23/12.
https://doi.org/10.1145/3611643.3616363

KEYWORDS
program repair, static analysis, Datalog, symbolic execution
ACM Reference Format:
Yu Liu, Sergey Mechtaev, Pavle Subotić, and Abhik Roychoudhury. 2023.
Program Repair Guided by Datalog-Defined Static Analysis. In Proceedings of
the 31st ACM Joint European Software Engineering Conference and Symposium
on the Foundations of Software Engineering (ESEC/FSE ’23), December 3–9,
2023, San Francisco, CA, USA. ACM, New York, NY, USA, 13 pages. https:
//doi.org/10.1145/3611643.3616363

1 INTRODUCTION
Program analysis determines if the behaviour of a given program

satisfies a certain property. Program repair based on static program
analysis is an attractive technique, since, in contrast to test-driven
program repair [23], it does not require executing the program, thus
significantly simplifying deployment, and it avoids test-overfitting
by taking program properties into account. A plethora of static
analysis techniques exist, each characterised by a unique set of
underlying mechanisms, target programming languages, and target
program properties. These characteristics significantly impact the
implementation and optimisation of each analysis. Existing pro-
gram repair methods based on static analysis do not accommodate
this diversity, and are inherently tied to specific analysers. This
restricts their capacity to rectify a wide class of defects.

The goal of this work is to design a modular static program repair
system that fixes bugs violating a wide range of program properties
across multiple programming languages. The modularity implies
that the conceptual components, the modeling of programming
language semantics, analysis algorithms, search space construction,
and patch generation, are independent and reusable. Such a design
radically reduces the complexity of creating a static program repair
system capable of efficiently addressing a wide spectrum of defects.

Our proposed architecture leverages the modular static analysis
framework based on Datalog. In this setup, Datalog acts as a domain
specific language (DSL) for defining program analyses. A program is
encoded into a database i.e., a set of input relations, and the program
analysis constraints are defined as a Datalog query. A Datalog solver
acts as a programmable fixed point engine that computes a least
fixed point solution to the program analysis constraints. Datalog
enables both a succinct and modular encoding of the program
analysis, while providing high efficiency and interoperability [34].

To introduce program repair to this setup, we propose a novel
approach called symbolic execution of Datalog (SEDL). We define
the repair search space by injecting symbols into the input relations

https://doi.org/10.1145/3611643.3616363
https://doi.org/10.1145/3611643.3616363
https://doi.org/10.1145/3611643.3616363

ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA Yu Liu, Sergey Mechtaev, Pavle Subotić, and Abhik Roychoudhury

Buggy

PL’s semantics
Modeling

construction
Search space

execution
of query

Symbolic
solving
Constraint

mapping
Source code

Symbolic

Symlog Violation

Datalog

Analysis as

Change of

Program
Program

Facts

Datalog Query

Facts

Patch

Datalog Facts

Inference
Conditions

Figure 1: SymlogRepair, a program repair system using sym-
bolic execution of Datalog (SEDL) implemented in Symlog.

representing the buggy program. These symbols denote unknown
constants, unknown predicates, and unknown truthfulness of facts
in the database. The resulting symbolic database represents a set
of changes to the original database. SEDL executes the Datalog
analysis query on the symbolic database, and the outcome of this
execution summarises how values from various subdomains, when
substituted in place of symbols, impact the inference of various
output facts. These subdomains, expressed as logical constraints
over the symbols, capture the dependencies between the input and
output of the query; in analogywith path conditions in conventional
symbolic execution, we call them inference conditions. Given an
inference condition for an output fact, any satisfying assignment
of symbols enables the inference of this fact, and any falsifying
assignment disables its inference. To repair the program, we use an
SMT solver to find a valuation of symbols that produces the desired
query output, such as the absence of property violations.

We implemented SEDL in a tool called Symlog, which utilises
the state-of-the-art Datalog engine Soufflé [20]. Symlog transforms
a given symbolic database and query into a meta-program, which,
when executed using a conventional Datalog evaluator, produces
the result of symbolically executing the original query on the orig-
inal database. To mitigate state explosion, we implemented two
optimisation techniques for the meta-program. First, we group pos-
sible valuations of symbols into equivalent classes to eliminate
redundant exploration of identical proof trees during symbolic
Datalog evaluation. Second, we apply delta-debugging [47] to effi-
ciently identify dependencies between input and output facts. The
key advantage of the meta-programming approach is that it allows
us to leverage the optimisations provided by existing Datalog en-
gines [37] without modifying the engines. Lastly, we implemented
SymlogRepair that generates candidate patches by solving Symlog’s
inference conditions for program analysis outputs with Z3 [11] to
avoid property violations, and then ranks the candidates based on
minimality. The architecture of SymlogRepair is shown in Figure 1.

To demonstrate the modularity of the proposed architecture, we
specialised SymlogRepair for six types of defects across three pro-
gramming languages. First, we realised SymlogRepair[NPE, Java],
which uses SEDL to repair null pointer exception (NPE) bugs in Java
programs [13]. We use Doop [8] to model the semantics of Java, and
Digger [35] to define the analysed property. Second, we realised
SymlogRepair[Leak, Python], the first approach for repairing data
leaks in Python notebooks [38]. We use the rules by Yang et al. [45]

to model the semantics of Python, and to define the analysed prop-
erty. Finally, we realised SymlogRepair[Securify2, Solidity] for re-
pairing four classes of security vulnerabilities in Solidity smart
contracts: access control, unhandled exception, reentrancy, and
locked ether. We use Securify2 [2, 41] to model the semantics of
smart contracts, and to define the analysed properties.

In our evaluation, SymlogRepair[NPE, Java] correctly repaired 8
out of 10 NPE bugs detected by Digger, outperforming NPEX [25] by
1 correct patch, and AlphaRepair [44] and InCoder [16] by 6 and 8
correct patches respectfully. SymlogRepair[Leak, Python] correctly
repaired 6 out of 11 notebook preprocessing leakage bugs detected
by the analyser, while AlphaRepair and InCoder failed to repair any.
SymlogRepair[Securify2, Solidity] correctly repaired 63 out of 64
vulnerabilities in smart contracts, outperforming Elysium [15] by
47 correct patches. Our optimisations played a key role in enabling
the generation of patches, as our tool without optimisations repair
fewer bugs due to running out of memory.

The contributions of our work are summarised as follows:
• A static program repair architecture based on Datalog, where
repair is formulated as the problem of modifying a given
database representing the buggy program to make the query
representing the analysis detect zero property violations;

• Symbolic execution of Datalog (SEDL), the enabling compo-
nent of our architecture, which identifies how changes to
the database impact the result of a query;

• An efficient implementation of SEDL in a tool called Symlog1;
and its application to program repair, SymlogRepair.

• SymlogRepair instances: SymlogRepair[NPE, Java] for fix-
ingNPE bugs in Java programs, SymlogRepair[Leak, Python]
for repairing data leak defects in Python notebooks, and
SymlogRepair[Securify2, Solidity] for repairing four classes
of security vulnerabilities in Solidity smart contracts, as well
as an evaluation of these instances on realistic bugs.

2 OVERVIEW
In this section, we give an overview of our approach. We first
explain how Datalog is used to define a program analysis. Then,
we demonstrate how SEDL, the key technical novelty of this work,
symbolically executes this analysis. Finally, we show SymlogRepair
fixes a null pointer exception (NPE) defect.

Since the definitions of practical analyses require hundreds of
lines of code, and the semantics of real-world programming lan-
guages is extremely complex, for the illustrative purpose, we use
simplified language and analysis. The language contains elemen-
tary statements (variable initialisations, assignments and method
calls), and call statement guards that check if a variable is not null.
The formal grammar of this language is given in Figure 4.

Consider the following program written in our simple language:

x = null

y = x

y.call()

This program triggers an NPE as y will be null when y.call() is
performed. The remainder of this section will describe how this
bug can be detected and fixed with Datalog.

1Implementation of Symlog and SymlogRepair: https://github.com/symlog/symlog

https://github.com/symlog/symlog

Program Repair Guided by Datalog-Defined Static Analysis ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA

x = null

y = x

y.call()

1

2

3

flow(1, 2).

flow(2, 3).

assign_null ("x", 1).

assign ("y", "x", 2).

call("y", 3).

(a) A program’s CFG and its EDB
representation.

npe(V, L) :-

call(V, L),

null(V, L),

!guard(V, L).

null(V, L) :-

flow(L1, L),

assign_null(V, L1).

null(V, L) :-

flow(L1, L),

null(V, L1),

!assign(V, _, L1),

!assign_obj(V, L1).

null(V, L) :-

flow(L1, L),

assign(V, V1, L1),

null(V1, L1).

(b) NPE analysis expressed as a Dat-
alog query.

x = null

y = x

if (y!=null) y.call()

1

2

3

+ guard("x", 3).

(c) Repair with guard and the cor-
responding EDB change.

x = null

y = x

y.call()

1

2

x = new obj()
4

3

- flow(1, 2).

+ flow(1, 4).

+ flow(4, 2).

+ assign_obj ("x", 4).

(d) Repair with assignment and
the corresponding EDB change.

flow(1,2) assign_null("x",1)

null("x",2) flow(2,3) assign("y","x",2)

null("y",3) call("y",3) !guard("y",3)

npe("y",3)

(e) A proof tree of the output of NPE analysis query demonstrating the presence of an NPE bug.

Figure 2: A program with a null pointer exception (NPE) bug, an analysis that detects this bug, its proof tree, and two repairs.

𝜉3 flow(𝛼1,𝛼2) assign_null("x",1)
𝜉1 ∧ 𝛼1 = 1

null("x",𝛼2) 𝜉4 flow(𝛼2,𝛼3) !assign("x",_,𝛼2) 𝜉6 assign_obj(𝛼5,𝛼6)
𝜉4 ∧ 𝛼3 = 3 ∧ ¬(𝜉6 ∧ 𝛼5 = “𝑥” ∧ 𝛼6 = 𝛼2)

null("x",𝛼2)

null("x",𝛼2) 𝜉2 flow(2, 3) assign("y","x",2)
𝜉2

null("y",3) call("y",3) 𝜉5 guard(𝛼4, 3)
¬(𝜉5 ∧ 𝛼4 = “𝑦”)

npe("y",3)

Figure 3: A symbolic proof tree (in two parts) of an NPE after inserting a statement between the nodes 1 and 2.

⟨stmt⟩ ::= ⟨var⟩ = new obj() | ⟨var⟩ = null |
⟨var⟩ = ⟨var⟩ | ⟨call⟩

⟨guard⟩ ::= ⟨var⟩ != null

⟨call⟩ ::= ⟨var⟩.call() | if (⟨guard⟩) ⟨var⟩.call()

Figure 4: Example programming language.

2.1 Program Analysis with Datalog
Datalog is a query language based on logic programming. A Dat-
alog query is a set of Horn clauses comprising of a set of body
predicates (left part) and a head predicate (right part). The symbol
:- shows that the left part is logically implied from the right part.
A Datalog query is executed against a database of facts referred to
as the extensional database (EDB) and produces a set of derived
facts, referred to as the intensional database (IDB). Since Datalog
implements the semantics of fix point computation, and many pro-
gram analysis algorithms are instances of fix point computation,
Datalog is often used as a language for defining program analyses.

To analyse a program with Datalog, the program is represented
as an EDB. For instance, we can construct a program’s control-flow

graph (CFG) as a set of facts as shown in Figure 2a. In this EDB, the
predicate flow encodes arcs of the CFG, e.g. flow(1,2) states that
there is an arc between the nodes 1 and 2. The fact assign_null
("x",1) states that the variable x is assigned to null in the node
1; assign("y","x",2) states that the value of x is assigned to y
in the node 2, and call("y",3) states that a method of the object
stored in y is called in the node 3.

Figure 2b shows an example analysis for detecting NPEs. This
analysis defines two predicates. The predicate npe(V,L) states that
there may be a dereferencing of null stored in the variable V in
the node L. The predicate null(V,L) states that the variable V may
store null at the entry of the node L. The predicates are defined using
four rules. The first rule states an NPE happens when a method of
a null object is called without a guard. The second rule states that
a variable may be null at the entry of a node if it is assigned to null
in a parent node. The third rule states that a variable may be null
at the entry of a node if it is not assigned at the entry of a parent
node, and may be null at the entry of that parent node. The fourth
rule state that a variable may be null at the entry of a node if it is
assigned to a variable that may be null in a parent node.

When a query is executed on an EDB, a Datalog engine computes
all facts that can be inferred from the database using the rules of the

ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA Yu Liu, Sergey Mechtaev, Pavle Subotić, and Abhik Roychoudhury

query. For example, for the above program and analysis, Datalog
infers the fact npe("y",3) stating that there may be an NPE in the
node 3. In Figure 2e, a proof tree visualises how this fact is derived.

2.2 Symbolic Execution of Datalog
The key technical novelty of this work is SEDL that determines
how a change to the EDB affects the output of a given query. A set
of changes to the database is encoded using symbols, and then the
query is executed symbolically. The result of symbolic execution of
a Datalog query compactly summarises the relations between the
input symbols and the output of the query.

Consider the following symbolic EDB obtained from the EDB in
Figure 2a by injecting symbolic constants 𝛼𝑖 representing unknown
constants and symbolic signs 𝜉𝑖 representing unknown truthfulness
(if the associated facts are true of false):
𝜉1 flow(1, 2). assign ("y", "x", 2).

𝜉2 flow(2, 3). call("y", 3).

𝜉3 flow(𝛼1, 𝛼2). 𝜉5 guard(𝛼4, 3).

𝜉4 flow(𝛼2, 𝛼3). 𝜉6 assign_obj(𝛼5, 𝛼6).

assign_null ("x", 1).

Any valuation of these symbols corresponds to a concrete EDB. For
example, the original EDB corresponds to the following valuation:

{ 𝜉1 ↦→ 𝑇, 𝜉2 ↦→ 𝑇, 𝜉3 ↦→ 𝐹, 𝜉4 ↦→ 𝐹, 𝜉5 ↦→ 𝐹, 𝜉6 ↦→ 𝐹, ... }.
Executing the analysis in Figure 2b on this symbolic EDB with

SEDL yields the fact npe("y",3) and the inference condition 𝜙 for
this fact defined as a finite set of disjuncts:

𝜙 ≜ 𝜉1 ∧ 𝜉2 ∧ ¬(𝜉5 ∧ 𝛼4 = “𝑦”)
∨ (𝜉2 ∧ 𝜉3 ∧ 𝛼1 = 1 ∧ 𝜉4 ∧ 𝛼3 = 2

∧ ¬(𝜉6 ∧ 𝛼5 = “𝑥” ∧ 𝛼6 = 𝛼2) ∧ ¬(𝜉5 ∧ 𝛼4 = “𝑦”))
∨ ...

Each disjunct represents a subset of programs encoded in the sym-
bolic EDB where the defect npe("y",3) is detected using the same
proof. The first disjunct corresponds to the original program. The
second disjunct corresponds to buggy programs with a statement
inserted between the nodes 1 and 2, for example,
x = null

y = new obj()

y = x

y.call()

A symbolic proof tree corresponding to the second disjunct is
given in Figure 3. In this proof tree, the labels at each production
capture the conditions under which the rule can be applied. The
disjunct is computed as a conjunction of all these labels.

2.3 Fixing an NPE with SymlogRepair
We now demonstrate how to apply SEDL for program repair. Given
a buggy program and a Datalog-defined analyser that detects the
bug, SymlogRepair defines the patch search space by injecting
symbols into an EDB representation of the program. The method of
search space construction is determined by a domain expert based
on the analysed property and the modelling of the programming
language semantics in the EDB. Section 5 shows how to generate
search spaces for realistic analyses. Here we assume that the search
space is defined by the symbolic EDB in Section 2.2.

Since not all assignments of symbols may correspond to syntac-
tically valid programs, we restrict them with structural constraints
𝜓 . For the example above, the structural constraints capture that
the flow relation does not form branches or cycles, and that each
node contains a single statement.

To generate a patch for the program, we construct and solve
a repair condition. A repair condition is a formula over symbols
injected into the EDB representation of the program, such that any
satisfying assignment of this formula corresponds to a program for
which the analysis does not infer property violations. We obtain
this condition by symbolically executing the analysis using our
implementation of SEDL, Symlog. For the example above, the repair
condition is ¬𝜙 ∧𝜓 , since it ensures the fact npe("y",3) will not
be inferred, and the program is syntactically valid.

Since repair constraints accept multiple solutions, we only con-
sider minimal solutions, such that all other satisfying assignments
change a superset of values corresponding to the original program.
A minimal solution for the above example is

{ 𝜉1 ↦→ 𝑇, 𝜉2 ↦→ 𝑇, 𝜉3 ↦→ 𝐹, 𝜉4 ↦→ 𝐹, 𝜉5 ↦→ 𝑇, 𝛼4 ↦→ “𝑦”, ... }.

It corresponds to the CFG and EDB presented in Figure 2c.
Another minimal solution shown in Figure 2d is

{ 𝜉1 ↦→ 𝐹, 𝜉2 ↦→ 𝑇, 𝜉3 ↦→ 𝑇, 𝜉4 ↦→ 𝑇, 𝜉5 ↦→ 𝐹, 𝜉6 ↦→ 𝑇,

𝛼1 ↦→ 1, 𝛼2 ↦→ 4, 𝛼3 ↦→ 2, 𝛼5 ↦→ “𝑥”, 𝛼6 ↦→ 4, ... }.

The second solution shows the ability of our approach to “invent”
new values that do not exist in the original database.

3 SYMBOLIC EXECUTION OF DATALOG
In this section, we introduce relevant background on Datalog, and
define our key technical novelty, symbolic execution of Datalog.

3.1 Background
Datalog is a query language based on Horn clauses in the form
L0:-L1, ...,L𝑛 , where each L𝑖 is a literal p(t1, ...,t𝑛) such that p
is a predicate and t𝑖 are terms. A term is either a constant or a
variable. Facts are ground literals, i.e. literals without variables.
A ground substitution 𝜃 ≜ {𝑥1/𝑐1, ..., 𝑥𝑛/𝑐𝑛} is a mapping from
variables to constants. We denote an application of the substitution
𝜃 to the term t as t𝜃 , and to the literal L as L𝜃 . EDB, extensional
database, is a set of input facts. IDB, intensional database, is a set
of output facts determined by the query. The Herbrand Base HB
is the set of all expressible facts. EHB denotes the set of all HB
facts where the predicate appears in EDB; IHB denotes the set of
all HB facts where the predicate appears in IDB, but not EDB. The
semantics of a Datalog program 𝑃 can be represented as a function
𝔐𝑃 : 2EHB → 2IHB that for each existential database computes all
IDB-facts that logically follow from that database. Datalog allows
specifying a goal to select a subset of its outputs that are subsumed
by the goal. For example, the fact f(1,1) is subsumed by the goal
f(X,X), but f(1,2) is not.

Consider the Datalog query 𝑃 in Figure 2b that specifies an NPE
analysis for a simple programming language defined in Figure 4.
Let the CFG of an analysed program be represented via an EDB
consisting of nodes, arcs, such asflow(1,2), and information about
statements such as the fact assign("y","x",2) stating that the

Program Repair Guided by Datalog-Defined Static Analysis ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA

value of x is assigned to y in the node 2. The semantics of such
program, 𝔐𝑃 , is a function that for an CFG represented as a set of
facts returns the set of IDB facts npe and null as follows:

𝔐𝑃

©­­­­­«


flow(1, 2),
flow(2, 3),

assign_null(“𝑥”, 1),
assign(“𝑦”, “𝑥”, 2),

call(“𝑦”, 3)


ª®®®®®¬
=


npe(“𝑦”, 3)
null(“𝑥”, 2)
null(“𝑦”, 3)


To define𝔐𝑃 , we use the proof-theoretic interpretation of Data-

log in which the meaning of a program is defined as the set of all
facts that can be inferred from the program. For a given rule L0 :-
L1, ..., L𝑛 and a set of ground facts F1, ..., F𝑛 , the output fact F0

can be inferred in one step from F1, ..., F𝑛 if there is a substitution
𝜃 such that for any 𝑖 ∈ 0..𝑛, F𝑖 = L𝑖𝜃 . This procedure is referred
to in the Datalog literature as the elementary production principle
(EPP). A ground fact 𝐹 can be inferred from a program 𝑃 if either
𝐹 ∈ 𝑃 or 𝐹 can be inferred by applying EPP a finite number of times.
The sequence of applications of EPP used to infer a fact 𝐹 from 𝑃

forms a proof of 𝐹 from 𝑃 .
A proof can be represented using a proof tree. For a given Datalog

query 𝑄 , an EDB 𝐸, and a ground fact 𝐹 , a proof tree of 𝐹 from 𝐸

is the tree (𝐹, 𝑅, 𝜃, {𝑡1, ..., 𝑡𝑛}) such that 𝑛 = 0 iff 𝐹 ∈ 𝐸, otherwise
𝑅 ≜ L0 :- L1, ..., L𝑛 is a rule from 𝑄 , 𝐹 = L0𝜃 , and 𝑡𝑖 are proof trees
of L𝑖𝜃 . For the NPE analysis described above, the proof tree of the
fact npe("y",3) is visualised in Figure 2e.

3.2 Semantics of SEDL
The goal of symbolic execution of Datalog (SEDL) is to identify how
varying values in a database impacts the result of executing a query
on this database. To achieve this, SEDL executes a Datalog query on
an abstracted database which represents a set of concrete databases.
The result of symbolic execution is a set of pair of output facts and
logical constraints that enable the inference that facts. Through this
process, SEDL succinctly summarises the outcome of executing the
query on all of the encoded concrete databases.

By analogy with symbolic execution of conventional programs,
we abstract a given database by injecting symbols that represent
unknown information. SEDL uses three categories of symbols: sym-
bolic constants, symbolic predicates and symbolic signs. We denote
symbolic constants as 𝛼, 𝛽,𝛾 that range over finite domains of num-
bers, strings, etc. We use them to represent facts with unknown
constants, e.g. flow(𝛼,𝛽). We denote symbolic predicates as 𝜌 that
range over all predicates. We use them to represent facts with un-
known predicates, e.g. 𝜌(1,2). We denote symbolic signs as 𝜉 that
range over booleans. We associate a symbolic sign with a fact to
control if the fact is positive or negative. Collectively, we refer
to such symbols as Σ ≜ {𝜎1, ..., 𝜎𝑛} over domains 𝐷1, ..., 𝐷𝑛 . All
these symbols can be used simultaneously to represent facts with
unknown predicates, constants and truthfulness.

We consider the set of constraints Φ over the symbols Σ that
include the standard logical connectives and equalities between
symbols and constants from the corresponding domains. For exam-
ple, the following is a valid constraint: (𝜉1∨¬𝜉2)∧(𝛼 = 𝛾)∧(𝛽 ≠ 5).
We denote the evaluation of the formula 𝜙 value under the inter-
pretation {𝑣𝑖 ∈ 𝐷𝑖 }𝑖∈[1..𝑛] as 𝜙 [𝜎1 ↦→𝑣1, ..., 𝜎𝑛 ↦→𝑣𝑛].

We call the set of all facts expressible using given predicates,
constants, and symbols the symbolic Herbrand base, denoted as SHB.
We similarly define SEHB and SIHB. Given a symbolic fact 𝑓 ∈
SHB, we define its concretisation with the values {𝑣𝑖 ∈ 𝐷𝑖 }𝑖∈[1..𝑛] ,
denoted as 𝑓 [𝜎1 ↦→𝑣1, ..., 𝜎𝑛 ↦→𝑣𝑛], as the fact obtained by replacing
all symbols with their concrete counterparts. Given a symbolic
EDB E ⊂ SEHB, we define its concretisation with the values {𝑣𝑖 ∈
𝐷𝑖 }𝑖∈[1..𝑛] , denoted as E[𝜎1 ↦→𝑣1, ..., 𝜎𝑛 ↦→𝑣𝑛], as the EDB obtained
from E by concretising all symbolic facts, and removing all facts
corresponding to symbolic signs with the negative interpretation.

We define the semantics of symbolic execution of a Datalog pro-
gram 𝑃 as a function 𝔖𝑃 : 2SEHB → 2SIHB×Φ. Given a symbolic
EDB E, this function returns a set of pairs of symbolic facts and
logical constraints. We refer to these pairs as the set of symbolic out-
puts and the corresponding inference conditions. The latter resemble
path conditions in conventional symbolic execution in that they
specify under which condition the output is generated. Specifically,
for each concretisation of E with {𝑣𝑖 ∈ 𝐷𝑖 }𝑖∈[1..𝑛] , the output of
the query is identical to the set of all concretisations of the outputs
of SEDL on E corresponding to the positive inference conditions:

∀𝑣1 ∈𝐷1, ..., 𝑣𝑛 ∈𝐷𝑛 .𝔐𝑃 (E[𝜎1 ↦→𝑣1, ..., 𝜎𝑛 ↦→𝑣𝑛])
= { 𝑓 [𝜎1 ↦→𝑣1, ..., 𝜎𝑛 ↦→𝑣𝑛]

| (𝑓 , 𝜙) ∈ 𝔖𝑃 (E) ∧ 𝜙 [𝜎1 ↦→𝑣1, ..., 𝜎𝑛 ↦→𝑣𝑛] }
The inference of a symbolic fact from a symbolic EDB can be

visualised using a symbolic proof tree, a proof tree in which pro-
ductions are annotated with logical constraints that enable that
productions. Formally, for a given Datalog query 𝑄 , a symbolic
EDB E, and a symbolic fact 𝐹 , a symbolic proof tree of 𝐹 from E
is the tree (𝐹, 𝑅, 𝜙, {𝜃0, ..., 𝜃𝑛}, {𝑡1, ..., 𝑡𝑛}) such that 𝑛 = 0 iff 𝐹 ∈ E,
otherwise 𝑅 ≜ L0 :- L1, ..., L𝑛 is a rule from 𝑄 , 𝐹 = L0𝜃0, 𝑡𝑖 are
symbolic proof trees of L𝑖𝜃𝑖 , and the substitutions {𝜃0, ..., 𝜃𝑛} are
identical under each satisfying assignment of𝜙 . Apart from that, we
are only interested in feasible symbolic proof trees, that is symbolic
proof trees where all logical annotations are consistent with each
other, since in this case the symbolic proof tree corresponds to at
least one concrete proof tree for a concrete database.

To illustrate SEDL, consider the Datalog query in Figure 2b, and
the symbolic database in Section 2.2. A symbolic proof tree of the
fact npe("y",3) inferred by SEDL from this database is given in
Figure 3. The inference condition for this fact is formed as the
conjunction of all constraints in the symbolic proof tree:

𝜉2 ∧ 𝜉3 ∧ 𝛼1 = 1 ∧ 𝜉4 ∧ 𝛼3 = 2
∧ ¬(𝜉6 ∧ 𝛼5 = “𝑥” ∧ 𝛼6 = 𝛼2) ∧ ¬(𝜉5 ∧ 𝛼4 = “𝑦”)

3.3 Encoding a Neighbourhood of a Database
Although SEDL can execute an abstracted database that is fully
symbolic, practical applications such as program repair described
in Section 5 benefit from injecting symbols into an existing con-
crete database, thus considering a neighbourhood of this concrete
database. Let 𝐸 be an EDB; its 𝑘-neighbourhood N(𝐸, 𝑘) represents
the set of databases differed from the original one in at most 𝑘 facts:

N(𝐸, 𝑘) ≜ { 𝐸′ | 𝐸′ ⊆ EHB ∧ |𝐸′△𝐸 | < 𝑘 }
where △ is symmetric difference and 𝑘 is a user-defined parameter.

ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA Yu Liu, Sergey Mechtaev, Pavle Subotić, and Abhik Roychoudhury

To represent a neighbourhood of concrete database using sym-
bols, we augment the symbolic EDB with structural constraints.
For example, the symbolic encoding of 𝑘-neighbourhood N(𝐸, 𝑘)
for an EDB 𝐸 can be defined through a pair of a symbolic EDB E
and constraints𝜓 such that

N(𝐸, 𝑘) = { E[𝜎1 ↦→𝑣1, ..., 𝜎𝑛 ↦→𝑣𝑛]
| 𝜓 [𝜎1 ↦→𝑣1, ..., 𝜎𝑛 ↦→𝑣𝑛] ∧ 𝑣𝑖 ∈ 𝐷𝑖 }

To illustrate such encoding, consider the EDB
node (1). flow(1, 2).

node (2).

Its 1-neighbourhood can be encoded as the symbolic EDB
node (1). assoc. with 𝜉1 flow(1, 2). assoc. with 𝜉4
node (2). assoc. with 𝜉2 flow(𝛽, 𝛾). assoc. with 𝜉5
node(𝛼). assoc. with 𝜉3

and the structural constraints

𝜉3 ∧ 𝜉5 ∧ atLeast(2, 𝜉1, 𝜉2, 𝜉4)
∨ 𝜉1 ∧ 𝜉2 ∧ 𝜉4 ∧ atMost(1, 𝜉3, 𝜉5)

where atLeast and atMost are cardinality constraints. In the context
of program repair driven by Datalog analysis, Section 5 shows how
to encode an analysis specific neighbourhood consisting of only
syntactically valid programs.

4 REALISATION OF SEDL IN SYMLOG
Symlog employs a meta-programming approach to implementing
SEDL. Specifically, a given Datalog query and a symbolic EDB are
transformed into a meta-query and a meta-EDB in such a way that
executing the meta-query on the meta-EDB with the standard Data-
log semantics yields the output of symbolic execution of the original
query on the original symbolic database. We collectively refer to
the meta-query and the meta-EDB as themeta-program. The advan-
tage of this approach is that it enables us to reuse existing efficient
implementations of Datalog, and makes Symlog independent of the
Datalog evaluation strategy.

4.1 Naïve Encoding of SEDL
We first describe a naïve implementation of SEDL. It explicitly
enumerates all values from the domains of symbols inside the meta-
program, and computes how each of them relates to the output of
the query. To achieve this, we augment all predicates used in the
query with auxiliary variables that store the assignment of symbolic
constants to concrete values, which we refer to as symbolic bindings.
To ensure that assignments of symbolic constants are consistent
within a derivation of each output fact, as per the definition of
symbolic proof trees in Section 3.2, we propagate the values of
symbolic bindings across each rule.

Assume that a given symbolic EDB contains the symbolic con-
stants 𝛼1, ..., 𝛼𝑛 . We introduce auxiliary Datalog variables𝐶1, ...,𝐶𝑛
for symbolic bindings. For each rule, the meta-query adds𝐶1, ...,𝐶𝑛
to the head and each literal of the body. For instance, we transform
the first rule defining null in Figure 2b into
null(V, L, 𝐶1, ..., 𝐶𝑛) :-

flow(L1, L, 𝐶1, ..., 𝐶𝑛),

assign_null(V, L1, 𝐶1, ..., 𝐶𝑛).

To transform the EDB into a meta-EDB, the naïve approach
enumerates all instantiations of symbolic constants with the values
from the corresponding domains. For example, given the EDB fact
flow(𝛼1, 2), we transform it into the rule
flow(𝐶1, 2, 𝐶1, ..., 𝐶𝑛) :-

domain_alpha_1(𝐶1), ...,

domain_alpha_n(𝐶𝑛).

where each predicate domain_alpha_𝑖 , called symbolic domain pred-
icate, is true for all values from the domain of 𝛼𝑖 . After the meta-
program is executed, the resulting values of symbolic bindings
capture the assignment of symbolic constants that enable the gen-
eration of corresponding output facts.

To support symbolic predicates, the naïve approach introduces
auxiliary integer variables 𝑃𝑖 called predicate selectors for each
symbolic predicate to identify which of the concrete predicates
from the corresponding domain is enabled. For each rule, the meta-
query adds these variables to the head and each literal of the body.
In the meta-EDB, we transform each fact with a symbolic predicate,
say, 𝜌(1,2) where the domain of 𝜌 is {p1, p2}, into the rules
p1(1, 2, 𝑃) :- P = 1.

p2(1, 2, 𝑃) :- P = 2.

After the meta-program is executed, the resulting values of predi-
cate selectors indicate if output facts can be inferred by relying on
various instantiations of the symbolic predicates.

To support symbolic signs, the naïve approach introduces auxil-
iary boolean variables 𝑆𝑖 called sign selectors for each fact with a
symbolic sign. To generate ameta-EDB, we transform each fact with
a symbolic sign, say, 𝐹 defined as 𝜉 p(1, 2), into the fact p(1, 2,
True), and each other fact with the same or a different predicate,

say, q(3, 4), into q(3, 4, False). To generate a meta-query, we
transform each rule by adding sign selectors to the head and each
literal of the body, and also additional constraints that state that
the head depends on 𝐹 if at least one of the literals of the body de-
pends on 𝐹 . For example, given the rule t(X, Y):- v(X), r(Y),
we transform it into the rule
t(X, Y, 𝑆) :- v(X, 𝑆1), r(Y, 𝑆2), 𝑆 = 𝑆1 ∨ 𝑆2.

After the meta-program is executed, the resulting values of sign
selectors indicate if output facts can be inferred with or without
relying on the fact with a symbolic sign.

By computing the values of auxiliary variables (symbolic bind-
ings, predicate selectors and sign selectors), it is possible to recon-
struct inference conditions for each output fact. However, since
the domains of symbolic constants and the number of facts with
symbolic signs can be huge, this approach does not scale to realistic
databases, which motivated us to design optimisations to avoid
explicit enumeration for these two categories of symbols.

4.2 Optimisation for Symbolic Constants
To address the search space explosion of the naïve approach, instead
of enumerating all possible values of symbolic constants in the
definition of symbolic domain predicates, we explicitly maintain
abstract symbols during evaluation. For each symbolic constant 𝛼
with the domain 𝐷 defined by the symbolic domain predicate in
the meta-program described in Section 4.1, we optimise the meta-
program by compressing𝐷 in a way that does not change the output
of the query. We separately handle two categories of constants in

Program Repair Guided by Datalog-Defined Static Analysis ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA

𝑝 (..., 𝑐𝑖 , ...) ∈ E ⇒ depend(𝑝, 𝑖, 𝑐𝑖)
𝐿 :− ..., 𝑝 (..., 𝑐𝑖 , ...), ∈ 𝑄 ⇒ depend(𝑝, 𝑖, 𝑐𝑖)
𝐿 :− ..., 𝑝1 (..., 𝑋𝑖 , ...), ..., 𝑝2 (..., 𝑋 𝑗 , ...), ∈ 𝑄,𝑋𝑖 ≡ 𝑋 𝑗 ⇒

∀𝑐. depend(𝑝1, 𝑖, 𝑐) ⇔ depend(𝑝2, 𝑗, 𝑐)

Figure 5: Constraints defining the relation depend: 𝑄 is the
query, E is the symbolic EDB, 𝑐𝑖 /𝑋𝑖 is a constant (symbolic or
concrete)/a variable appearing as the i-th predicate parame-
ter, 𝑋𝑖 ≡ 𝑋 𝑗 denotes that 𝑋𝑖 and 𝑋 𝑗 are identical variables.

the domain: those constants that already exist somewhere else in
the program, and previously unseen constants.

To handle constants that already exist somewhere in the pro-
gram, we consider all such constants 𝑐 from 𝐷 , which we refer to as
unifiable constants of 𝛼 , appearing either in the EDB or the query
that there exists a symbolic proof tree whose production rule an-
notations contain a dependency between 𝛼 and 𝑐 , e.g. a constraint
𝛼 = 𝑐 . If such dependency does not exist in any of the symbolic
trees, we prune these constants from the symbolic domain predicate,
since the lack of interactions with existing constants implies that
these elements of the domain can be handled in the same way as
previously unseen constants. However, identifying the exact set of
unifiable constants is impractical, because that would require com-
puting all symbolic proof trees in advance. Instead, we compute an
overapproximation of this set by using the relation depend(𝑝, 𝑖, 𝑐)
that states that the i-th parameter of the predicate 𝑝 may depend on
the symbolic or concrete constant 𝑐 . This relation can be computed
using constraints defined in Figure 5 via a fixed point computation
algorithm. For the symbolic constant 𝛼 , we select all pairs {(𝑝 𝑗 , 𝑖 𝑗)}
such that depend(𝑝 𝑗 , 𝑖 𝑗 , 𝛼) for all 𝑗 . Then, an overapproximation of
the set of unifiable constants for 𝛼 can be defined as

unifiable(𝛼) ≜ 𝐷 ∩
⋃
𝑗

{ 𝑐 | depend(𝑝 𝑗 , 𝑖 𝑗 , 𝑐) }.

To handle the elements of 𝐷 that do not exist anywhere else
in the program, which we refer to 𝐷new ≜ 𝐷 \ unifiable(𝛼), we
introduce extra constants that serve as abstract representation of
𝐷new. We also consider interactions between multiple symbolic
constants. For example, assume that the symbolic EDB contains
symbolic constants 𝛼 and 𝛽 . We introduce extra constants 𝑛1 and
𝑛2 to encode all partitionings of 𝛼 and 𝛽 into equivalence classes.
Given the EDB fact flow(𝛼, 2), we transform it into the rules
flow(𝐶1, 2, 𝐶1, 𝐶2) :- domain(𝐶1, 𝐶2).

domain(X, Y) :-

domain_alpha_unifiable(X),

domain_beta_unifiable(Y).

domain(𝑛1, Y) :- domain_beta_unifiable(Y).

domain(X, 𝑛1) :- domain_alpha_unifiable(X).

domain(𝑛1, 𝑛1).

domain(𝑛1, 𝑛2).

where domain_alpha_unifiable is the set of unifiable constants
for 𝛼 (the same for 𝛽), and domain is the optimised symbolic domain
predicate. The first rule defining this predicate states that symbolic
constants may take any of the values of corresponding unifiable
constants. The second and the third rules state that one of themmay
take a new, previously unseen value. The last two rules state that

both symbolic constants can take previously unseen values, either
equal (rule four) or different (rule five). After such meta-program
is executed, 𝑛1 and 𝑛2 can be replaced with 𝛼 and 𝛽 by adding
constraints imposed by the corresponding equivalence classes. For
example, the meta-program output fact null("v", 𝑛1, 𝑛1, 𝑛2)
would correspond to null("v", 𝛼) under the condition

𝛼 ∉ unifiable(𝛼) ∧ 𝛽 ∉ unifiable(𝛽) ∧ 𝛼 ≠ 𝛽

4.3 Optimisation for Symbolic Signs
Supporting symbolic signs is challenging because there are 2 |EDB |
ways to negate facts in the database. To avoid a search space explo-
sion, we generate inference conditions for only 𝑘 selected outputs
under the assumption that at most 𝑛 of the symbolic facts are nega-
tive. This assumption holds in our application to program repair,
since we only explore a neighbourhood of a given database, and
program repair constraints only depend on the inference of a small
number of output facts. For brevity, we only explain how to support
symbolic signs for 𝑘 = 𝑛 = 1.

For a given fact with a symbolic sign 𝐼 , the encoding in Section 4.1
enables us to determine if an output fact 𝑂 depends on that fact (if
it can be inferred with and without the presence that fact in the
database). We say that 𝐼 is a hard dependency of 𝑂 , if 𝑂 is only
inferred when the sign of 𝐼 is true. We formulate the problem of
computing the inference condition of 𝑂 in terms of symbolic signs
as the problem of finding all hard dependencies of 𝑂 among all
inputs with symbolic signs, since removing any hard dependency
from the database disables the generation of the output fact.

To identify all hard dependencies of a given output fact, we
rely on Zeller’s delta debugging algorithm [47] that operates by
iteratively splitting the space of solutions and investigating each
half individually. To apply delta-debugging, we define the function
interesting𝑂 that for a given set of input facts returns true if this
set contains all hard dependencies of 𝑂 . We also extend the en-
coding of symbolic signs in Section 4.1 so that sign selectors are
applied not to individual facts, but to sets of facts, to identify if an
output fact can be inferred without using any element from that set.
Such an extended encoding enables us to implement the function
interesting𝑂 , and thus apply the delta-debugging algorithm.

5 SYMLOGREPAIR AND ITS INSTANCES
In this section, we describe how SymlogRepair uses Symlog and
an SMT solver to generate patches, and describe SymlogRepair in-
stances: SymlogRepair[NPE, Java], SymlogRepair[Leak, Python],
and SymlogRepair[Securify2, Solidity].

5.1 Architecture of SymlogRepair
The architecture of SymlogRepair is shown in Figure 1. It accepts
two inputs: the source code of the buggy program, and an analysis
defined in Datalog. It then executes the following steps:

(1) converts the program into a Datalog EDB, injects symbols
into this EDB, and produces structural constraints𝜓 over the
symbols that captures a set of syntactically valid programs;

(2) executes the analysis symbolically obtaining inference con-
ditions 𝜙 for the analysis outputs manifesting violations.;

(3) constructs the repair condition ¬𝜙 ∧𝜓 ;

ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA Yu Liu, Sergey Mechtaev, Pavle Subotić, and Abhik Roychoudhury

(4) solves the repair condition to produce minimal repairs, that
is, repairs that minimally modify original values in the EDB;

(5) maps the obtained valuation of symbols back into the source
code to generate a patch.

Our approach generates minimal repairs, because such repairs
are less likely to break unspecified functionality of the program [30].
The first step, generating a repair search space, is analysis and pro-
gramming language specific. Below, we describe how it is realised
for the three analysis problems we consider in this work.

5.2 SymlogRepair for Java NPE
Digger’s NPE analysis is built on top of a points-to analysis, which
approximates the heap memory configuration at program points.
Among other uses, this information can be used to detect if a pointer
variable points to NULL when it is dereferenced.

The search space for fixing NPEs is defined through generic
templates that check if dereferenced program variables equal NULL,
and if so, perform various actions, such as not executing a fragment
of code, returning a default value, such as the call to the default
constructor of a given type, or perform an early exit. We select facts
related to the above templates to symbolise and add symbolic signs
to the facts that represent the function with the detected bug.

5.3 SymlogRepair for Python Notebook
Data leak analysis assesses the dependence between training and
test data, which can lead to artificially optimistic results. Prepro-
cessing data leakage happens when training and test data are trans-
formed together by a function that may impute results based on
both data sets, like normalization using both datasets’ distributions.

To repair the bug, preprocessing should be removed from source
data and applied separately to training and test data. For example,
in Figure 6, the correct version uses fit_transform for training
data and transform for testing data. We define the search space of
repair by a generic template that moves preprocessing from source
to training data and add corresponding preprocessing for test data.
Symbolic constants and symbolic signs are added for preprocessing
APIs and control flow graph components, respectively.

5.4 SymlogRepair for Smart Contracts
We address four smart contract vulnerabilities detected by Secu-
rify2 [2, 41]: access control, reentrancy, unhandled exceptions, and
locked Ether.

There are four types of access control bugs. Transaction ori-
gin bugs emerge from using the outdated tx.origin for caller
verification. The fix is to replace it with msg.sender. We symbol-
ise tx.origin related facts. Suicidal bugs result from unchecked
selfdestruct() calls. The fix is to ensure the caller is the con-
tract’s owner. We symbolise the facts of owner variable and control
flow graph. Leaking and delegate call bugs are addressed similarly
as the suicidal bug.

Reentrancy bugs occur when external contract can make new
calls to the calling contract before the first invocation is finished.
The repair is finalising all internal state changes before the call is
executed. We symbolise control flow facts for such bugs. Unhandled
exception bugs are caused by unchecked low-level call returns. The
fix is to add a check for the returned value of the low level call.

Table 1: NPE10 dataset of NPE bugs from Java projects.

Program Bugs kLoC Project description

jfreechart 1 132 A 2D chart library for Java
spoon 1 155 A library for Java code transformation
jackson-databind 1 142 A data-binding package for Jackson
jeveassets 1 101 An asset manager for Eve-Online
fastjson 1 186 A JSON processing library
karaf 1 128 A modulith runtime
acs-aem-commons 2 111 Components of AEM consulting practice
camel 1 1156 An integration framework
thirdeye 1 126 A tool for time series analysis

Locked ether bugs result from contracts with payable functions but
no withdrawal functions. One can fix the bugs by removing the
payable attribute, adding a withdraw function or adding a function
with selfdestruct. We symbolise facts for selfdestruct.

6 EVALUATION
In this section, we evaluate SymlogRepair by investigating the
following research questions (RQs).

RQ-I: Ability to Repair a Diverse Class of Bugs. Can Sym-
logRepair fix a diverse bugs and how it compares to existing
tools that target the same bugs?

RQ-II: Impact of Optimisations. How much do our optimi-
sations improve the result compared to the naïve implemen-
tation of SEDL in Symlog?

6.1 Experimental Setup
Our experiments were performed on an Intel® Core™ Intel(R)
Xeon(R) Gold 6258R CPU at 2.70GHz with 256GB of physical RAM
running Ubuntu 20.04.1 LTS. We set timeout to 1 hour.

Datasets. We constructed three datasets. The first is NPE10, a
dataset consisting of 10 NPE bugs in Java projects: five of them are
from NPEX dataset [25]; two from BugSwarm [39], and three bugs
that we systematically mined on GitHub; the criterion of including
the bugs into NPE10 is that they are detected by Digger [35], the
underlying component of SymlogRepair[NPE, Java]. The summary
of this dataset is given in Table 1. The second is PL11, a dataset
consisting of 11 preprocessing leakage bugs in Python notebooks
collected by Yang et al. [45], which excludes bugs not detectable
by the used analyser and false positives. Finally, SC63 is a dataset
composed of 63 bugs in Solidity smart contracts. It includes 22 bugs
from Smartbugs [14] and 41 bugs from ScrawlID [46]. SC63 excludes
bugs from Smartbugs and from ScrawlID that Securify2 [41] cannot
detect. As ScrawlID does not provide ground truth, we manually
annotated the selected bugs with correct repairs.

Tools. When repairing Java NPE bugs, we considered two config-
urations of SymlogRepair[NPE, Java]: (1) SRNJN using the naïve
algorithm defined in Section 4.1 and (2) SRNJO using the optimi-
sations described in Section 4.2 and Section 4.3. We considered
three baselines for NPE bugs: NPEX [25] that is specifically de-
signed for NPE bugs, and a general machine learning based tool Al-
phaRepair [44], and InCoder [16], a code model that demonstrated
state-of-the-art results for program repair [19]. When repairing
Python notebook data leaks, we considered two configurations

Program Repair Guided by Datalog-Defined Static Analysis ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA

Table 2: Patches generated by SymlogRepair[NPE, Java], NPEX, AlphaRepair and InCoder for NPE10: indicates correct
patch, G# — property-overfitting patch, # — no patch found, OOM — out of memory, “Symbols” show the num. of symbolic
constants + the num. of symbolic signs. The optimised SymlogRepair fixed more bugs than NPEX, AlphaRepair and InCoder,
and outperformed the non-optimised version by avoiding OOMs.

Project Version Symbols Patch Time Memory (GB)

NPEX AlphaRepair InCoder SRNJN SRNJO SRNJN SRNJO SRNJN SRNJO

jfreechart 2182 5+8303 # 3m 53s 2m 54s 6.245 1.322
spoon b3f568d 5+8024 # # 3m 6s 2m 7s 6.547 1.330
jackson-databind 974ccdd 8+531 G# # 2m 44s 2m 36s 3.587 2.643
jeveassets f35ccd9 5+2198 # # 2m 16s 2m 11s 10.099 10.098
camel 597883f 5+40768 # # 11m 29s 8m 30s 23.688 6.173
thirdeye e286991 5+54 # # 1m 20s 1m 21s 2.203 2.197
fastjson 7c05c6f 8+5739 # # # # G# - 2m 43s OOM 2.643
karaf 5965290 8+573 G# G# # G# G# 10m 32s 4m 28s 21.881 22.047
acs-aem-commons 374231978 13+14277 # # # - 5m 47s OOM 6.344
acs-aem-commons 374231969 13+14206 # # # - 5m 46s OOM 6.408

Overall 7.5+5737.3 7+1 2+2 0+0 6+1 8+2 >3m 50s 3m 50s >9.788 6.121

SymlogRepair[Leak, Python]: (1) SRPLN using the naïve algorithm
and (2) SRPLO using the optimisations. We also selected AlphaRe-
pair and InCoder as baselines for Python bugs. For repairing bugs
in Solidity smart contracts, we considered two configurations of
SymlogRepair[Securify2, Solidity]: (1) SRSSN using the naïve algo-
rithm and (2) SRSSO using the optimisations. As the baseline, we
selected the state-of-the-art smart contract repair tool Elysium [15].

Correctness criteria. Patches that satisfy the analysis property we
classify as plausible (contrary to test-driven repair, where plausible
patches refer to patches that pass given tests). A patch is correct if
it is semantically equivalent to the developer patch. We manually
investigated generated patches to check their correctness. In the
manual analysis, we conservatively assumed that the correct patch
must be syntactically identical to the developer patch subject to
trivial refactorings. Those patches that are plausible, but not correct,
in analogy with test-overfitting [36], we call property-overfitting.

6.2 Ability to Repair a Diverse Class of Bugs
To investigate the ability to handle a diverse class of bugs, we
evaluated SymlogRepair[NPE, Java] on NPE10 dataset of Java NPE
bugs, SymlogRepair[Leak, Python] on PL11 dataset of Python data
leaks, and SymlogRepair[Securify2, Solidity] on SC63 dataset of
Solidity smart contracts bugs.

Table 2 summarises the results of our experiments on NPE10.
In this table, the columns “Patch” show the number of correct
and property-overfitting patches for each configuration. SRNJO is
the default (optimised) configuration of SymlogRepair[NPE, Java].
SRNJO generated patches for all 10 bugs, and 8 of them were re-
paired correctly, and for 2 the tool generated overfitting patches.
We compared SRNJO with NPEX, AlphaRepair and InCoder. For Al-
phaRepair and InCoder we used the Datalog analyser for validating
candidate patches. The experiments demonstrated that SRNJO cor-
rectly repaired one more bugs than NPEX, 6 more bugs compared
with AlphaRepair, and 8 more than InCoder.

Table 3 summarises the results of our experiments on PL11. As
in the previous experiment, the columns “Patch” show the number
of correct and property-overfitting patches generated by each con-
figuration. For PL11, developer patches are not available, therefore

we classify generated patches into correct or plausible via a manual
inspection and cross-checking. SRPLO is the default (optimised)
configuration of the SymlogRepair[Leak, Python]. SRPLO repaired
6 out of 11 bugs correctly. Among the remaining 5 bugs, for 4 bugs
it generated patches that overfit the property, and one was not re-
paired due to timeout. AlphaRepair and InCoder failed to generate
any patches that satisfy the analysis property.

Table 4 summarises the results of our experiments on SC63. The
columns “Fixed” show the numbers of fixed bugs by the state-of-
the-art smart contract repair tool Elysium [15] and the default
configuration of SymlogRepair[Securify2, Solidity], SRSCO. “Time”
shows the average time taken by SymlogRepair for generating
patches. The experiments demonstrated that our tool generated
47 more correct patches than Elysium. The non-optimised version,
SRSSN, failed to generate any patches because of OOM errors.

RQ-I: SymlogRepair demonstrated its ability to statically re-
pair a diverse class of realistic bugs across multiple program-
ming languages, where it demonstrated results close to or
better than the state-of-the-art.

6.3 Impact of Optimisations
Symbolic execution of Datalog requires additional memory, because
it has to explore a large space of possible relations, which poses
a scalability challenge. To improve scalability, we introduced op-
timisations. To investigate the impact of these optimisations, we
compared the performance of the naïve (cf. Section 4.1) and opti-
mised (cf. Section 4.2) configurations of SymlogRepair in terms of
time and memory usage.

Table 2 and Table 3 provide detailed statistics of executing SRNJN,
SRNJO, SRPLN and SRPLO on the corresponding datasets. The
columns “Symbols” show how many symbols (symbolic constants
+ symbolic signs) were automatically injected into the EDB to gen-
erate a repair search space. The columns “Time” show total elapsed
time, and “Memory” show the peak memory usage or OOM if an
out of memory error occurred. The results in Table 2 show that
80% of the time our optimisation exhibits speedups of up to 2.5×
(ignoring unfinished benchmarks). In terms of memory usage, our

ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA Yu Liu, Sergey Mechtaev, Pavle Subotić, and Abhik Roychoudhury

Table 3: Patches generated by SymlogRepair[Leak,Python] for PL11. The notation is identical to Table 2. The optimisations
enabled SymlogRepair to repair multiple bugs by avoiding OOMs.

Notebook Symbols Patch Time Memory (MB)

AlphaRepair InCoder SRPLN SRPLO SRPLN SRPLO SRPLN SRPLO

nb_2528 6+22584 # # # - 23m 50s OOM 91.049
nb_2816 6+11975 # # # - 30m 46s OOM 81.211
nb_1417 6+17659 # # # - 10m 58s OOM 70.569
nb_949 6+95652 # # # - 47m 24s OOM 393.623
nb_2760 6+14941 # # # G# - 18m 51s OOM 121.021
nb_3144 6+247561 # # # # - Timeout OOM 181.112
nb_318 6+49748 # # # G# - 27m 59s OOM 191.175
nb_296 6+493152 # # # G# - 25m 35s OOM 494.718
nb_2646 6+5196 # # # G# - 35m 20s OOM 60.447
nb_195 6+79617 # # # - 12m 44s OOM 429.864
nb_3594 6+21238 # # # - 13m 36s OOM 80.828

Overall 6+96610.5 0+0 0+0 0+0 6+4 - >24m 7s - 199.328

Table 4: Patches generated by Elysium and
SymlogRepair[Securify2, Solidity] for SC63. The nota-
tion is identical to Table 2.

Bug Type Bugs Fixed (Correct+Overfitting) Time
Elysium SRSSO

Access control 5 3+0 4+1 3m 39s
Unhandled exception 13 4+0 13+0 4.32s
Reentrancy 8 8+0 8+0 1m 47s
Locked ether 41 0+0 41+0 1m 34s

Overall 63 15+0 62+1 < 4m

optimisation exhibits a reduction 80% of the time of up to a 5×
(ignoring cases that ran out of memory). In the case of results in
Table 3, the naïve version runs out of memory on all benchmarks.
On the other hand, the optimised version was able to repair all but
a single benchmark. Programs in Table 2 are significantly larger,
but their repair search space, as shown in the “Symbols” column, is
smaller due to localisation described in Section 5.2, which explains
the difference in time and memory usage across these benchmarks.
In the experiments on SC63, the non-optimised version of Sym-
logRepair failed to generate any patches because of OOM errors,
while the optimised version fixed 62 bugs correctly, while using
less than 16GB of memory on average, and less than 4 minutes on
average.

RQ-II Our optimisations play a crucial role in ensuring the
scalability of SymlogRepair, as they on average reduce the
repair time and memory usage while enabling the generation
of more patches by preventing OOM exceptions.

7 DISCUSSION
The use of program properties defined in Datalog enables our ap-
proach to avoid test-overfitting intrinsic to test-driven program re-
pair [22, 36], but our approach may overfit the property. First, static
analysis properties are designed to avoid undesirable behaviour
but not to specify the intended behaviour. Second, static analysis is
subject to false positives. Third, some analysis may not be able to
recognise a patch as correct due to the use of over-approximations.

from sklearn.preprocessing import MinMaxScaler

dataset = load_data ()

scaler = MinMaxScaler(feature_range =(0, 1))

- scale_data=scaler.fit_transform(dataset)

- train_data , test_data = split_data(scale_data)

+ train_data , test_data = split_data(dataset)

x_train , y_train = split_train_data(train_data)

x_test , y_test = split_test_data(test_data)

model = LSTM_model ()

+ x_train_new = scaler.fit_transform(x_train)

+ x_test_new = scaler.transform(x_test)

- model.fit(x_train , y_train)

+ model.fit(x_train_new , y_train)

- predictions = model.predict(x_test)

+ predictions = model.predict(x_test_new)

Figure 6: Patch for preprocessing leakage bug in nb_2528.

Thus, patches generated by our approach still need to be reviewed
by developers and/or prioritised by AI. We will investigate the
problem of prioritising statically generated patches in future work.

Our method of symbolically executing standard Datalog, how-
ever many practical applications of Datalog rely on extensions such
as stratified negation and extra-logical operations. In future work,
we plan to investigate how to support various Datalog extensions.

To support a new class of bugs in SymlogRepair, it is necessary
to provide a Datalog program for detecting this class of bugs, and
define symbolic search space for fixing the bugs. In this work, we
used existing research analysers for Java, Python and Solidity. Com-
mercial Datalog-based analysers like Semmle [1] provide analyses
for more programming languages.

We manually wrote three ground truth patches from NPE10, as
well as all the patches from PL11 and SC63. Due to the nuances of
domain-specific knowledge, the provided solutions may not capture
all possible intricacies or be optimal.

In this work, we only investigate the application of SEDL to
program repair. However, we believe SEDL can be applied to many
domains, so as conventional symbolic execution. In future work, we

Program Repair Guided by Datalog-Defined Static Analysis ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA

will investigate other applications of SEDL: data integration [26],
repairing networks [28], and database testing.

8 RELATEDWORK
Our work contributes to automated program repair [17]; it is rele-
vant to static program repair and repair based on symbolic execu-
tion. SEDL is relevant to Datalog extensions and Datalog debugging.

Static Program Repair. Program repair systems based on static
analysis fix specific types of bugs, such as memory leaks, null
pointer exceptions (NPEs), data races, or locking errors. Mem-
Fix [24] addresses the memory leak problem by reducing it to an
exact cover problem and using a SAT solver to find a solution.
Saver [18] uses object flow graphs to patch memory errors in C
programs. NPEX [25] applies a custom symbolic execution tech-
nique to repair NPEs in Java programs, but relies on stack traces
to detect bugs. Footpatch [42] uses separation logic to fix memory
leaks and NPEs. Hippodrome [9] repairs data races in Java pro-
grams with the aid of RacerD’s static analysis [7]. Crayons [10]
synthesises patches for locking API misuses using graph coloring
and ranking, and estimates the criticality of code in static analyser
error traces. We did not compare SymlogRepair with techniques
other than NPEX, because they handle different defect classes and
use an ad-hoc integration of static analysis and repair. Rather than
developing new Datalog-based analyzers for these defects, which
is outside this work’s scope, we showed our method’s generality
by integrating existing Datalog-based analyzers for various bugs
across multiple languages.

Several work employs static analysers to discover repair pat-
terns. Phoenix [5] mines repair patterns from examples of bug fixes
reported by static analysers and abstracts patterns by clustering
similar edit examples through the use of a domain-specific language.
Avatar [4] infers fix patterns from the static analysis violations de-
tected by FindBugs. Our approach does not learn repair patterns,
but instead provides repair strategies through the use of Datalog,
which enables it to address a wider range of bugs.

Program Repair with Symbolic Execution. Our work is relevant
to semantic program repair such as SemFix [32], Angelix [31] and
symbolic execution with existential second-order constraints (SE-
ESOC) [29]. These approaches also abstract a given program by
injecting symbols, and execute the program symbolically to infer
repair constraints. The key difference of our work is that instead
of inferring constraints from test, we infer them from a Datalog
analyser, thus taking the analysed property into account.

ProgramRepair Benchmarks. We constructed datasets specifically
for the defect classes handled by the Datalog analysers, instead of
relying on Defects4J [21] and QuixBugs [27] often used for evaluat-
ing test-driven repair. The new datasets better reflect the intended
usage scenario of our approach, i.e. repairing bugs detected by static
analysis, as opposite to repairing bugs found by testing. Bugs found
by static analysis to universal program properties, e.g. the lack of
crashes and security vulnerabilities, rather than project-specific
requirements, and such bugs are not accompanied with tests.

ML-based Program Repair. ML-based program repair recently
demonstrated promising results [19, 43]. We used two state-of-the-
art tools, AlphaRepair [44] and InCoder [16], as baselines in our
evaluation. In future work, we will investigate how to augment ML-
based repair with semantic information from Symlog to improve
their effectiveness in repairing static analysis bugs.

Datalog Input Repair. Database input repair has been studied in
the context of integrity constraints violations that are limited to
fragments of first order logic [3]. Theoretical solutions for positive
Datalog using abduction are proposed [33]. However, traditional
database methods often don’t scale well for larger static analysis
rulesets [51]. Zhao et al.’s technique [51] uses proof annotations
in Datalog for enhanced scalability, but it mainly restricts to non-
symbolic domains and doesn’t execute repairs. Elastic incremen-
talisation extends this by incorporating provenance annotations
for input adjustments in incremental Datalog [49, 50]. Xin et al.’s
method [48] uses counter-example abstract refinement to choose
the optimal EDB subset modeling an abstraction in program anal-
ysis. SynNet [12] generates candidate inputs for rules in network
synthesis. To our knowledge, our work is the first repair technique
that scales to large rulesets and inputs in Datalog-based program
analyses.

Symbolic Datalog. Standard Datalog is limited to the domain
of powersets. Recently, Datalog engines have integrated symbolic
reasoning. Formulog [6] is a Datalog engine that uses SMT solving
in the presence of symbolic variables in the ruleset. Modus [40]
is a non-recursive Datalog engine that allows non-grounded vari-
ables to solve the container package dependency problem. Unlike
these approaches, Symlog executes symbolic variables by encod-
ing them in the standard Datalog setup thus existing optimised
Datalog engines can be used. Based on the inferred constraints Sim-
logRepair can provide a patch that transforms the EDB to a correct
version based on inferred constraints and an SMT solver. Thus, our
technique can seamlessly plug into standard Datalog-based static
analysis setups.

9 CONCLUSION
We introduced a new static program repair architecture that, by re-
lying on Datalog, is able to repair a wide range of defects for various
programming languages. Its core enabling component is symbolic
execution of Datalog, which computes dependencies between the
input and the output of a query, and repairs the database based on
the desired output specification. We implemented this technique in
an efficient tool Symlog, and applied to program repair based on
Datalog-defined program analysis in the tool SymlogRepair. Our
experiments demonstrated that SymlogRepair scales to real-world
programs, and repairs a wide range of defects, including NPE bugs
in Java programs, and data leaks in Python notebooks.

ACKNOWLEDGEMENTS
We thank the anonymous reviewers for their feedback which helped
improve this paper. This work was partially supported by a Singa-
pore Ministry of Education (MoE) Tier 3 grant “Automated Program
Repair”, MOE-MOET32021-0001.

ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA Yu Liu, Sergey Mechtaev, Pavle Subotić, and Abhik Roychoudhury

REFERENCES
[1] 2023. CodeQL (formely Semmle). https://codeql.github.com/. Accessed: 2023-06-

29.
[2] 2023. Securify 2.0 security scanner for Ethereum smart contracts. https://github.

com/eth-sri/securify2. Accessed: 2023-06-29.
[3] Marcelo Arenas, Leopoldo Bertossi, and Jan Chomicki. 1999. Consistent Query

Answers in Inconsistent Databases. In Proceedings of the Eighteenth ACMSIGMOD-
SIGACT-SIGART Symposium on Principles of Database Systems (Philadelphia,
Pennsylvania, USA) (PODS ’99). Association for Computing Machinery, New
York, NY, USA, 68–79. https://doi.org/10.1145/303976.303983

[4] Nathaniel Ayewah, William Pugh, David Hovemeyer, J David Morgenthaler, and
John Penix. 2008. Using static analysis to find bugs. IEEE software 25, 5 (2008),
22–29.

[5] Rohan Bavishi, Hiroaki Yoshida, and Mukul R Prasad. 2019. Phoenix: Automated
data-driven synthesis of repairs for static analysis violations. In Proceedings of
the 2019 27th ACM Joint Meeting on European Software Engineering Conference
and Symposium on the Foundations of Software Engineering. 613–624.

[6] Aaron Bembenek, Michael Greenberg, and Stephen Chong. 2020. Formulog:
Datalog for SMT-Based Static Analysis. Proc. ACM Program. Lang. 4, OOPSLA,
Article 141 (nov 2020), 31 pages. https://doi.org/10.1145/3428209

[7] Sam Blackshear, Nikos Gorogiannis, Peter W O’Hearn, and Ilya Sergey. 2018. Rac-
erD: compositional static race detection. Proceedings of the ACM on Programming
Languages 2, OOPSLA (2018), 1–28.

[8] Martin Bravenboer and Yannis Smaragdakis. 2009. Strictly declarative specifica-
tion of sophisticated points-to analyses. In Proceedings of the 24th ACM SIGPLAN
conference on Object oriented programming systems languages and applications.
243–262.

[9] Andreea Costea, Abhishek Tiwari, Sigmund Chianasta, Abhik Roychoudhury,
Ilya Sergey, et al. 2021. HIPPODROME: Data Race Repair using Static Analysis
Summaries. arXiv preprint arXiv:2108.02490 (2021).

[10] Alfredo Cruz, Mahsa Varshosaz, Claire Le Goues, and Andrzej Wasowski. 2022.
Patching Locking Bugs Statically with Crayons. ACM Transactions on Software
Engineering and Methodology (2022).

[11] Leonardo De Moura and Nikolaj Bjørner. 2008. Z3: An Efficient SMT Solver. In
Proceedings of the Theory and Practice of Software, 14th International Conference
on Tools and Algorithms for the Construction and Analysis of Systems (Budapest,
Hungary) (TACAS’08/ETAPS’08). Springer-Verlag, Berlin, Heidelberg, 337–340.

[12] Ahmed El-Hassany, Petar Tsankov, Laurent Vanbever, and Martin T. Vechev. 2017.
Network-Wide Configuration Synthesis. In Computer Aided Verification - 29th
International Conference, CAV 2017, Heidelberg, Germany, July 24-28, 2017, Pro-
ceedings, Part II (Lecture Notes in Computer Science, Vol. 10427), Rupak Majumdar
and Viktor Kuncak (Eds.). Springer, 261–281. https://doi.org/10.1007/978-3-319-
63390-9_14

[13] David Evans. 1996. Static Detection of Dynamic Memory Errors. In Proceedings
of the ACM SIGPLAN 1996 Conference on Programming Language Design and
Implementation (Philadelphia, Pennsylvania, USA) (PLDI ’96). Association for
Computing Machinery, New York, NY, USA, 44–53. https://doi.org/10.1145/
231379.231389

[14] João F Ferreira, Pedro Cruz, Thomas Durieux, and Rui Abreu. 2020. Smartbugs:
A framework to analyze solidity smart contracts. In Proceedings of the 35th
IEEE/ACM International Conference on Automated Software Engineering. 1349–
1352.

[15] Christof Ferreira Torres, Hugo Jonker, and Radu State. 2022. Elysium: Context-
Aware Bytecode-Level Patching to Automatically Heal Vulnerable Smart Con-
tracts. In Proceedings of the 25th International Symposium on Research in Attacks,
Intrusions and Defenses. 115–128.

[16] Daniel Fried, Armen Aghajanyan, Jessy Lin, Sida Wang, Eric Wallace, Freda Shi,
Ruiqi Zhong, Wen-tau Yih, Luke Zettlemoyer, and Mike Lewis. 2022. Incoder: A
generative model for code infilling and synthesis. arXiv preprint arXiv:2204.05999
(2022).

[17] Claire Le Goues, Michael Pradel, and Abhik Roychoudhury. 2019. Automated
program repair. Commun. ACM 62, 12 (2019), 56–65.

[18] Seongjoon Hong, Junhee Lee, Jeongsoo Lee, and Hakjoo Oh. 2020. SAVER:
scalable, precise, and safe memory-error repair. In Proceedings of the ACM/IEEE
42nd International Conference on Software Engineering. 271–283.

[19] Nan Jiang, Kevin Liu, Thibaud Lutellier, and Lin Tan. 2023. Impact of code
language models on automated program repair. arXiv preprint arXiv:2302.05020
(2023).

[20] Herbert Jordan, Bernhard Scholz, and Pavle Subotic. 2016. Soufflé: On Synthesis of
ProgramAnalyzers. In Computer Aided Verification - 28th International Conference,
CAV 2016, Toronto, ON, Canada, July 17-23, 2016, Proceedings, Part II (Lecture Notes
in Computer Science, Vol. 9780), Swarat Chaudhuri and Azadeh Farzan (Eds.).
Springer, 422–430. https://doi.org/10.1007/978-3-319-41540-6_23

[21] René Just, Darioush Jalali, and Michael D Ernst. 2014. Defects4J: A database of ex-
isting faults to enable controlled testing studies for Java programs. In Proceedings
of the 2014 international symposium on software testing and analysis. 437–440.

[22] Xuan-Bach D Le, Ferdian Thung, David Lo, and Claire Le Goues. 2018. Over-
fitting in semantics-based automated program repair. In Proceedings of the 40th
International Conference on Software Engineering. 163–163.

[23] Claire Le Goues, ThanhVu Nguyen, Stephanie Forrest, and Westley Weimer. 2011.
Genprog: A generic method for automatic software repair. Ieee transactions on
software engineering 38, 1 (2011), 54–72.

[24] Junhee Lee, Seongjoon Hong, and Hakjoo Oh. 2018. Memfix: static analysis-based
repair of memory deallocation errors for c. In Proceedings of the 2018 26th ACM
Joint Meeting on European Software Engineering Conference and Symposium on
the Foundations of Software Engineering. 95–106.

[25] Junhee Lee, Seongjoon Hong, and Hakjoo Oh. 2022. NPEX: Repairing Java Null
Pointer Exceptions without Tests. (2022).

[26] Maurizio Lenzerini. 2002. Data integration: A theoretical perspective. In Proceed-
ings of the twenty-first ACM SIGMOD-SIGACT-SIGART symposium on Principles
of database systems. 233–246.

[27] Derrick Lin, James Koppel, Angela Chen, and Armando Solar-Lezama. 2017.
QuixBugs: A multi-lingual program repair benchmark set based on the Quixey
Challenge. In Proceedings Companion of the 2017 ACM SIGPLAN international
conference on systems, programming, languages, and applications: software for
humanity. 55–56.

[28] Boon Thau Loo, Tyson Condie, Minos Garofalakis, David E Gay, Joseph M Heller-
stein, Petros Maniatis, Raghu Ramakrishnan, Timothy Roscoe, and Ion Stoica.
2006. Declarative networking: language, execution and optimization. In Proceed-
ings of the 2006 ACM SIGMOD international conference on Management of data.
97–108.

[29] Sergey Mechtaev, Alberto Griggio, Alessandro Cimatti, and Abhik Roychoudhury.
2018. Symbolic executionwith existential second-order constraints. In Proceedings
of the 2018 26th ACM Joint Meeting on European Software Engineering Conference
and Symposium on the Foundations of Software Engineering. 389–399.

[30] Sergey Mechtaev, Jooyong Yi, and Abhik Roychoudhury. 2015. Directfix: Looking
for simple program repairs. In 2015 IEEE/ACM 37th IEEE International Conference
on Software Engineering, Vol. 1. IEEE, 448–458.

[31] Sergey Mechtaev, Jooyong Yi, and Abhik Roychoudhury. 2016. Angelix: Scalable
multiline program patch synthesis via symbolic analysis. In Proceedings of the
38th international conference on software engineering. 691–701.

[32] Hoang Duong Thien Nguyen, Dawei Qi, Abhik Roychoudhury, and Satish Chan-
dra. 2013. Semfix: Program repair via semantic analysis. In 2013 35th International
Conference on Software Engineering (ICSE). IEEE, 772–781.

[33] Babak Salimi and Leopoldo E. Bertossi. 2016. Causes for Query Answers from
Databases, Datalog Abduction and View-Updates: The Presence of Integrity
Constraints. In The Florida AI Research Society.

[34] Bernhard Scholz, Herbert Jordan, Pavle Subotić, and Till Westmann. 2016. On fast
large-scale program analysis in datalog. In Proceedings of the 25th International
Conference on Compiler Construction. 196–206.

[35] Jixiang Shen, Xi Wu, Neville Grech, Bernhard Scholz, and Yannis Smaragdakis.
2020. Explaining bug provenance with trace witnesses. In Proceedings of the 9th
ACM SIGPLAN International Workshop on the State Of the Art in Program Analysis,
SOAP@PLDI 2020, London, UK, June 15, 2020, Paddy Krishnan and Christoph
Reichenbach (Eds.). ACM, 14–19. https://doi.org/10.1145/3394451.3397206

[36] Edward K Smith, Earl T Barr, Claire Le Goues, and Yuriy Brun. 2015. Is the cure
worse than the disease? overfitting in automated program repair. In Proceedings
of the 2015 10th Joint Meeting on Foundations of Software Engineering. 532–543.

[37] Pavle Subotic, Herbert Jordan, Lijun Chang, Alan D. Fekete, and Bernhard Scholz.
2018. Automatic Index Selection for Large-Scale Datalog Computation. Proc.
VLDB Endow. 12, 2 (2018), 141–153. https://doi.org/10.14778/3282495.3282500

[38] Pavle Subotic, Lazar Milikic, and Milan Stojic. 2022. A Static Analysis Frame-
work for Data Science Notebooks. In 44th IEEE/ACM International Conference
on Software Engineering: Software Engineering in Practice, ICSE (SEIP) 2022, Pitts-
burgh, PA, USA, May 22-24, 2022. IEEE, 13–22. https://doi.org/10.1109/ICSE-
SEIP55303.2022.9794067

[39] David A Tomassi, Naji Dmeiri, Yichen Wang, Antara Bhowmick, Yen-Chuan
Liu, Premkumar T Devanbu, Bogdan Vasilescu, and Cindy Rubio-González. 2019.
Bugswarm: Mining and continuously growing a dataset of reproducible failures
and fixes. In 2019 IEEE/ACM 41st International Conference on Software Engineering
(ICSE). IEEE, 339–349.

[40] Chris Tomy, Tingmao Wang, Earl T. Barr, and Sergey Mechtaev. 2022. Modus: a
Datalog dialect for building container images. In Proceedings of the 30th ACM Joint
European Software Engineering Conference and Symposium on the Foundations of
Software Engineering, ESEC/FSE 2022, Singapore, Singapore, November 14-18, 2022,
Abhik Roychoudhury, Cristian Cadar, and Miryung Kim (Eds.). ACM, 595–606.
https://doi.org/10.1145/3540250.3549133

[41] Petar Tsankov, Andrei Dan, Dana Drachsler-Cohen, Arthur Gervais, Florian
Buenzli, and Martin Vechev. 2018. Securify: Practical security analysis of smart
contracts. In Proceedings of the 2018 ACM SIGSAC Conference on Computer and
Communications Security. 67–82.

[42] Rijnard van Tonder and Claire Le Goues. 2018. Static automated program repair
for heap properties. In Proceedings of the 40th International Conference on Software
Engineering. 151–162.

https://codeql.github.com/
https://github.com/eth-sri/securify2
https://github.com/eth-sri/securify2
https://doi.org/10.1145/303976.303983
https://doi.org/10.1145/3428209
https://doi.org/10.1007/978-3-319-63390-9_14
https://doi.org/10.1007/978-3-319-63390-9_14
https://doi.org/10.1145/231379.231389
https://doi.org/10.1145/231379.231389
https://doi.org/10.1007/978-3-319-41540-6_23
https://doi.org/10.1145/3394451.3397206
https://doi.org/10.14778/3282495.3282500
https://doi.org/10.1109/ICSE-SEIP55303.2022.9794067
https://doi.org/10.1109/ICSE-SEIP55303.2022.9794067
https://doi.org/10.1145/3540250.3549133

Program Repair Guided by Datalog-Defined Static Analysis ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA

[43] Chunqiu Steven Xia, Yuxiang Wei, and Lingming Zhang. 2023. Automated
program repair in the era of large pre-trained language models. In Proceedings of
the 45th International Conference on Software Engineering (ICSE 2023). Association
for Computing Machinery.

[44] Chunqiu Steven Xia and Lingming Zhang. 2022. Less training, more repairing
please: revisiting automated program repair via zero-shot learning. In Proceedings
of the 30th ACM Joint European Software Engineering Conference and Symposium
on the Foundations of Software Engineering. 959–971.

[45] Chenyang Yang, Rachel A Brower-Sinning, Grace A Lewis, and Christian Käst-
ner. 2022. Data leakage in notebooks: Static detection and better processes. In
Proceedings of the 2022 37th IEEE/ACM International Conference on Automated
Software Engineering.

[46] Chavhan Sujeet Yashavant, Saurabh Kumar, and Amey Karkare. 2022. Scrawld:
A dataset of real world ethereum smart contracts labelled with vulnerabilities.
arXiv preprint arXiv:2202.11409 (2022).

[47] Andreas Zeller. 1999. Yesterday, my program worked. Today, it does not. Why?
ACM SIGSOFT Software engineering notes 24, 6 (1999), 253–267.

[48] Xin Zhang, Ravi Mangal, Radu Grigore, Mayur Naik, and Hongseok Yang. 2014.
On Abstraction Refinement for ProgramAnalyses in Datalog. In Proceedings of the

35th ACM SIGPLAN Conference on Programming Language Design and Implemen-
tation (Edinburgh, United Kingdom) (PLDI ’14). Association for Computing Ma-
chinery, New York, NY, USA, 239–248. https://doi.org/10.1145/2594291.2594327

[49] David Zhao, Pavle Subotic, Mukund Raghothaman, and Bernhard Scholz. 2021.
Towards Elastic Incrementalization for Datalog. In PPDP 2021: 23rd International
Symposium on Principles and Practice of Declarative Programming, Tallinn, Estonia,
September 6-8, 2021, Niccolò Veltri, Nick Benton, and Silvia Ghilezan (Eds.). ACM,
20:1–20:16. https://doi.org/10.1145/3479394.3479415

[50] David Zhao, Pavle Subotic, Mukund Raghothaman, and Bernhard Scholz. 2023.
Automatic Rollback Suggestions for Incremental Datalog Evaluation. In Practical
Aspects of Declarative Languages - 25th International Symposium, PADL 2023,
Boston, MA, USA, January 16-17, 2023, Proceedings (Lecture Notes in Computer
Science, Vol. 13880), Michael Hanus and Daniela Inclezan (Eds.). Springer, 295–312.
https://doi.org/10.1007/978-3-031-24841-2_19

[51] David Zhao, Pavle Subotic, and Bernhard Scholz. 2020. Debugging Large-scale
Datalog: A Scalable Provenance Evaluation Strategy. ACM Trans. Program. Lang.
Syst. 42, 2 (2020), 7:1–7:35. https://doi.org/10.1145/3379446

https://doi.org/10.1145/2594291.2594327
https://doi.org/10.1145/3479394.3479415
https://doi.org/10.1007/978-3-031-24841-2_19
https://doi.org/10.1145/3379446

	Abstract
	1 Introduction
	2 Overview
	2.1 Program Analysis with Datalog
	2.2 Symbolic Execution of Datalog
	2.3 Fixing an NPE with SymlogRepair

	3 Symbolic Execution of Datalog
	3.1 Background
	3.2 Semantics of SEDL
	3.3 Encoding a Neighbourhood of a Database

	4 Realisation of SEDL in Symlog
	4.1 Naïve Encoding of SEDL
	4.2 Optimisation for Symbolic Constants
	4.3 Optimisation for Symbolic Signs

	5 SymlogRepair and Its Instances
	5.1 Architecture of SymlogRepair
	5.2 SymlogRepair for Java NPE
	5.3 SymlogRepair for Python Notebook
	5.4 SymlogRepair for Smart Contracts

	6 Evaluation
	6.1 Experimental Setup
	6.2 Ability to Repair a Diverse Class of Bugs
	6.3 Impact of Optimisations

	7 Discussion
	8 Related Work
	9 Conclusion
	References

