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ABSTRACT

Automated program repair has been studied via the use of tech-
niques involving search, semantic analysis and artificial intelligence.
Most of these techniques rely on tests as the correctness criteria,
which causes the test overfitting problem. Although various ap-
proaches such as learning from code corpus have been proposed to
address this problem, they are unable to guarantee that the gener-
ated patches generalize beyond the given tests. This work studies
automated repair of errors using a reference implementation. The
reference implementation is symbolically analyzed to automatically
infer a specification of the intended behavior. This specification is
then used to synthesize a patch that enforces conditional equiva-
lence of the patched and the reference programs. The use of the
reference implementation as an implicit correctness criterion alle-
viates overfitting in test-based repair. Besides, since we generate
patches by semantic analysis, the reference program may have a
substantially different implementation from the patched program,
which distinguishes our approach from existing techniques for
regression repair like Relifix. Our experiments in repairing the
embedded Linux Busybox with GNU Coreutils as reference (and
vice-versa) revealed that the proposed approach scales to real-world
programs and enables the generation of more correct patches.
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1 INTRODUCTION

Software developers spend a significant amount of time and re-
sources for bug fixing. Automated program repair has gained promi-
nence due to its potential to reduce the manual debugging effort by
automatically suggesting patches for given defects. Indeed, state-
of-the-art program repair systems have been shown to be able to
address defects in real-world software. However, the low quality
of automatically generated patches remains a great barrier to the
adoption of this technology by software developers in practice.

Problem. The primary reason for the low quality of automatically
generated patches is the lack of specifications of the intended behav-
ior. Most program repair systems rely on tests as the correctness
criteria, because a formal specification is often unavailable in prac-
tice. However, since tests is an incomplete specification, generated
patches often do not correspond to developer intentions, but merely
overfit the tests. In order to increase the quality of automatically
generated patches, researchers have proposed such techniques as
patch prioritization [22], anti-patterns [37], test generation [43, 46],
etc. Although these techniques increase the probability of finding
correct patches, they nevertheless do not provide any correctness
guarantees beyond the tests in a given test suite.

Intuition. To address the overfitting problem, we propose to au-
tomatically infer the missing specification for a buggy program
from a correct reference program. A reference program is an alter-
native realization of the same functionality, which is often available
for libraries (e.g. standard library implementations, audio codecs,
compression algorithms, parsers, cryptographic algorithms), net-
work protocols [20], commodity software (e.g. GNU Coreutils and
Busybox implement the same set of UNIX utilities), in the area of dig-
ital signal processing [19], web servers and database management
systems. Note that a reference program may have a substantially
different implementation (different data structures and algorithms),
which distinguishes our approach from repair techniques [35] that
employ previous program versions. The use of a reference pro-
gram enables us to alleviate test overfitting and provides additional
correctness guarantees.

Challenges. Ideally, a generated patch should enforce the equiva-
lence of the patched and the reference programs, which poses two
challenges: scalability and applicability. First, a recent work [14]
reported that a straightforward combination of an equivalence
checking system [13] with counterexample-guided inductive syn-
thesis [1] to synthesize equivalence-enforcing patches is not scal-
able. Second, real-world implementations of the same functionality
rarely follow precisely the same specification, e.g. GNU Coreutils
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implements a superset of the functionality implemented in Busybox
and therefore cannot be directly used for equivalence checking.

Solution. To address the above challenges, we introduce amethod-
ology of patch generation based on a reference implementation that
integrates the notion of conditional equivalence [10] and a recent
scalable patch generation algorithm [26]. We rely on the user in-
sight to provide an input condition for patch generation that should
(1) include a bug-triggering input and (2) correspond to function-
ality shared by the buggy and the reference programs. Then, our
system automatically generates a patch for the buggy program that
enforces conditional equivalence of the patched and the reference
programs, that is equivalence for all inputs satisfying the provided
condition. Although the user is only required to provide an input
condition (the property being checked is derived automatically from
the reference program), this still may be non-trivial for applications
that involve a complex execution setup. To tackle this problem,
we propose a practical approach of introducing an input condition
based on the idea of parameterized tests [38], i.e. the condition is
defined by injecting symbolic parameters into existing tests.

Contributions. The main contributions of this work are:
(1) We propose to infer a correct specification from a reference

implementation and use it to guide program repair in order
to address the test overfitting problem.

(2) We introduce a scalable algorithm of patch generation based
on a reference implementation that guarantees conditional
equivalence of the patched and the reference programs w.r.t.
a user-defined input condition.

(3) We conduct an evaluation on two implementations of UNIX
utilities (GNU Coreutils and Busybox) that demonstrates that
our methodology addresses the test overfitting problem of
program repair and scales to real-world software.

2 OVERVIEW

Our approach takes four inputs: a test suite, a buggy and a reference
program, and a user-defined input condition (Figure 1).

As the first step, the node Fault localization of Figure 1 represents
the identification of suspicious expressions that might need to get
repaired. This is done by applying statistical fault localization [9]
based on the given test suite and the buggy program. The suspi-
cious expressions in the buggy program get replaced with symbolic
variables, denoted as the instrumented buggy program.

As the second step, the module Symbolic analysis of Figure 1
contains the symbolic execution of the reference program and the
instrumented buggy program using the user-defined input condi-
tion as a precondition. The result of each symbolic execution is a
set of pairs of resulting path conditions and symbolic output states
(see Definition 4.2) that is used as a specification.

As the last step, the inferred specifications for the reference
and the buggy programs are passed into the patch generator that
performs a counterexample-guided inductive repair loop. Specifically,
it performs the following iterations starting from the original buggy
expression as the initial (empty) patch:

(1) Construct a verification condition (VC) for the patch.
(2) Generate a counterexample input that violates the condi-

tional equivalence property by solving VC.

Buggy program Test suite

User-defined
input condition

Reference
implementation

Fault localization

Symbolic execution of in-
strumented buggy program

Symbolic execution
of reference program

Conditional
equivalence checker

Angelic forest
extractor

Patch
synthesizer

Patch

input

symbolic analysis

counterexample-guided inductive repair

Figure 1: Overall workflow of the approach.

(3) Extract an angelic forest [26] for the generated input.
(4) Synthesize a patch that satisfies the angelic forest.
(5) Go to step (1).

This loop repeats until a conditional equivalence-enforcing patch
is synthesized or the next patch/angelic forest cannot be found.

To illustrate our approach, we consider the reference program
in Figure 2a and the buggy program in Figure 2c. The reference
program implements an algorithm of searching for an element of
an array via linear search, while the buggy programs uses binary
search. The buggy program contains a bug in line 16.

A crucial element of our approach is the input condition ϕ that
has to be defined by the user. The most trivial choice of the input
condition would be simply True, i.e., checking equivalence for all
program input. However, this approach may have a poor scalability
as it has been reported in previous works [14]. Instead, we suggest
defining the input condition by parameterizing existing tests. Specif-
ically, not all inputs of a test case must be considered concretely,
some of them can be handled symbolically. Therefore, the user can
transform the test cases in logical constraints and possibly add
additional constraints. This represents a practical solution to bal-
ance the completeness and scalability of automated program repair.
The wider the input condition is formulated, the more complete, in
terms of covered input space, will be the generated patch.

To define the input condition ϕ, assume that the user formulates
it informally in the following way: we only consider sorted arrays of
the length 3 and without duplicates. First, we introduce a mapping
between program variables and symbolic variables:

{x 7→ γ ,a 7→ [α0,α1,α2], length 7→ δ }
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1 in t s e a r ch ( in t x , in t a [ ] , in t l e ng t h ) {
2 in t i ;
3 for ( i = 0 ; i < l e ng t h ; i ++) {
4 i f ( x == a [ i ] )
5 return i ;
6 }
7 return −1;
8 }

(a) Reference program

ID π r θ r
out

r1 γ = α0 0
r2 γ , α0 ∧ γ = α1 1
r3 γ , α0 ∧ γ , α1 ∧ γ = α2 2
r4 γ , α0 ∧ γ , α1 ∧ γ , α2 -1

(b) Summary of reference program

9 in t s e a r ch ( in t x , in t a [ ] , in t l e ng t h ) {
10 in t L = 0 ;
11 in t R = leng th −1;
12 do {
13 in t m = ( L+R ) / 2 ;
14 i f ( x == a [m] ) {
15 return m;
16 } e l se i f ( x < a [m] ) { / / bug f i x : x > a [m]
17 L = m+1 ;
18 } e l se {
19 R = m−1;
20 }
21 } while ( L <= R ) ;
22 return −1;
23 }

(c) Buggy program

ID π b θc θ b
out

b1 γ = α1 - 1
b2 γ , α1 ∧ β 0 ∧ γ = α2 β 0 : {x 7→ γ , a[m] 7→ α1 } 2
b3 γ , α1 ∧ β 0 ∧ γ , α2 ∧ β 1 β 0 : {x 7→ γ , a[m] 7→ α1 } -1

β 1 : {x 7→ γ , a[m] 7→ α2 }
b4 γ , α1 ∧ β 0 ∧ γ , α2 ∧ ¬β 1 β 0 : {x 7→ γ , a[m] 7→ α1 } -1

β 1 : {x 7→ γ , a[m] 7→ α2 }
b5 γ , α1 ∧ ¬β 0 ∧ γ = α0 β 0 : {x 7→ γ , a[m] 7→ α1 } 0
b6 γ , α1 ∧ ¬β 0 ∧ γ , α0 ∧ β 1 β 0 : {x 7→ γ , a[m] 7→ α1 } -1

β 1 : {x 7→ γ , a[m] 7→ α0 }
b7 γ , α1 ∧ ¬β 0 ∧ γ , α0 ∧ ¬β 1 β 0 : {x 7→ γ , a[m] 7→ α1 } -1

β 1 : {x 7→ γ , a[m] 7→ α0 }
(d) Specification of buggy program

Negative input x 7→ 2
a 7→ [2, 4, 6]
length 7→ 3

Expected output 0
Symbolic inputs x 7→ γ

a 7→ [α0, α1, α2]
length 7→ δ

Input condition ϕ B α0 < α1 < α2 ∧ δ = 3

(e) Test and input condition

VC = ∀α0∀α1∀α2∀γ
∧

(π r ,θ rout )

∧
(πb ,θbout )

π r ∧ πb ∧ (β = e⟦θc ⟧) ⇒ θ rout = θ
b
out

≡ ∀α0∀α1∀α2∀γ (
(r1,b3 ) ¬(γ = α0 ∧ γ , α1 ∧ β 0 ∧ β 0 = γ < α1 ∧ γ , α2 ∧ β 1 ∧ β 1 = γ < α2)
(r1,b4 ) ∧ ¬(γ = α0 ∧ γ , α1 ∧ β 0 ∧ β 0 = γ < α1 ∧ γ , α2 ∧ ¬β 1 ∧ β 1 = γ < α2)
(r3,b6 ) ∧ ¬(γ = α2 ∧ γ , α1 ∧ ¬β 0 ∧ β 0 = γ < α1 ∧ γ , α0 ∧ β 1 ∧ β 1 = γ < α0)
(r3,b7 ) ∧ ¬(γ = α2 ∧ γ , α1 ∧ ¬β 0 ∧ β 0 = γ < α1 ∧ γ , α0 ∧ ¬β 1 ∧ β 1 = γ < α0))

(f) Verification condition

Figure 2: Artifacts of motivating example

Then, the input constraint is defined as follows:

ϕ B α0 < α1 < α2 ∧ δ = 3

The given test suite contains one negative test case with the
input {x 7→ 2,a 7→ [2,4,6], length 7→ 3} and the expected output
0, because the first element is equal to the searched value 2. The
test case passes for the reference program, but fails for the buggy
program. The statistical fault localization identifies the expression
in line 16 as a suspicious expression, hence, we introduce the sym-
bolic variable β and generate an instrumented buggy program by
replacing (x < a[m]) with β . Note that the test case is not encoded
in the input condition ϕ, i.e., the repair steps themselves are inde-
pendent from any given concrete test input. This test case is only
needed for the identification of suspicious expressions.

Assuming ϕ, we execute the reference and instrumented buggy
program with a preconditioned symbolic execution. Preconditioned
symbolic execution (see Definition 4.1) explores only a subset of
program paths that are consistent with the condition ϕ. We will get
the results presented in Figure 2b and Figure 2d. The tables contain
so called specifications (see Definition 4.3), which describe the path
condition (π r for the reference program and πb for the buggy
program), the current context for the suspicious expression θc , and
the output symbolic state (θrout for the reference program and θbout
for the buggy program). The superscript index of β indicates the

occurrence id (or instance id) of this expression, since it can be
visited more than once during the execution.

With the results of the preconditioned symbolic execution we
can build the formula of the verification condition for the consid-
ered expression (x < a[m]). A verification condition (VC) encodes
the following idea: if both executions in the reference and buggy
program follow the same path, then their outputs should be the
same. The VC will also encode the values of the visible variables
in the expression (x < a[m]) computed in the symbolic context θc
that we denote as β = (x < a[m])⟦θc ⟧. The simplified version of
this first iteration VC is presented in Figure 2f. We skipped contra-
dicting pairs of path conditions from the buggy and the reference
program and discarded pairs that contradict the input condition ϕ.
Additionally, we simplified the formula by removing lines where
the symbolic output states match already, i.e., θrout = θ

b
out . In such

cases the implication is alwaysTrue and, hence, it does not provide
any additional value. The remaining formula includes the following
combinations of paths (represented by the according ids in Figure 2b
and Figure 2d): (r1,b3), (r1,b4), (r3,b6), (r3,b7), as also indicated at
the beginning of each line in the shown VC.

In order to check the validity of the verification condition, we
check the unsatisfiability of its negation as in previous works [13,
28]. The negated VCwill be solved using an off-the-shelf SMT solver
to generate satisfying values representing counterexamples, which
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do not satisfy the VC with the current replacement for the suspi-
cious expression. After negating the VC, the SMT solver generates
a counterexample input {x 7→ −1,a 7→ [−1,0,1]}.

In order to find the correct truth value for β , also called angelic
value (see Definition 3.6), we look at the path condition of the buggy
program that leads to the correct output symbolic state, which is
here θrout = 0 according to the reference program. Comparing with
the table in Figure 2d, this output can only be reached in the buggy
program by following the path b5. In order to take this specific
path with the given input values, β0 needs to be False. This leads
to the following angelic forest, which is the input structure for
our synthesizer and represents all needed values for the specific
suspicious expression (see Definition 3.8):

{(β0,c,σ )}, given that c B False,σ B {x 7→ −1,a[m] 7→ 0}

where c represents an angelic value of the considered expression
(a value that enables the program to pass the counterexample test)
and σ represents an angelic state (the concrete values of program
variables in the context in which the expression is executed).

The generated values are used to build the input for a component-
based synthesizer, which generates a new patch matching the cur-
rent synthesizer input. Given this input, the synthesizer returns a
plausible patch (x == a[m]). After inserting this expression in the
VC and negating it, the SMT solver generates a second counterex-
ample input {x 7→ 1,a 7→ [−1,0,1]}. The correct output symbolic
state for this input is θrout = 2 and this matches only the path b2. In
order to take this specific path with the second counterexample, β0
needs to be True. This leads to an extension of our angelic forest to:

{ (β0,False, {x 7→ −1,a[m] 7→ 0)},

(β0,True, {x 7→ 1,a[m] 7→ 0}) }.

Given this input, the synthesizer returns the patch (x >= a[m]).
After inserting this expression in the VC and negating it, the SMT
returns unsatisfiable, i.e., the synthesized patch fulfills all require-
ments. Note that (x >= a[m]) is not syntactically equivalent with
the correct patch (x > a[m]), but in this context (i.e. with the pre-
ceding if-condition) both expressions are semantically equivalent.
Our approach results in a patch for the buggy program, so that
given the input condition ϕ, the patched program is conditionally
equivalent with the reference program.

For comparing with test-driven repair techniques, we applied
Angelix [26], which uses a similar path generation algorithm, and
hence, it represents the closest existing approach and means a more
fair comparison than using any other test-driven repair technique.
For our motivating example we observed that Angelix only can
produce the plausible patch (a[m] < a[m]). It fixes only the given
negative test case, so in order to generate a correct patch it would
be necessary to include more test cases. Since our repair approach
is capable of using another program as correctness reference, it
generates the input for the synthesizer itself with the presented
counterexample-guided approach.

In this motivating example we showed that with our approach
it is possible to use a relatively simple reference program (e.g.,
the linear search) to repair an optimized program (e.g., the binary
search). The two programs do not need to be structurally similar,
as long as they solve the same problem.

3 BACKGROUND

In this section, we introduce the notation used to formally describe
the presented algorithms, define underlying program analysis tech-
niques, and also introduce related parts of previous patch generation
methods that are reused in our approach.

We consider programs written in an imperative programming
language. Programs are denoted as p1, ..., pk and the set of all
program as P. We define p[e 7→ e ′] as a program obtained from
p by substituting an expression e with e ′. Program variables are
represented as v1, ...,vk and the set of all program variables asV .

The considered programming language contains a statement
assume defined as follows:

assume(ϕ) B if (¬ϕ) { LOOP : goto LOOP; }

that is this statement triggers a non-termination (an infinite loop)
when the given condition does not hold.

Concrete program states (functions from program variables to
values) are indicated as σ and the set of all concrete program states
is denoted as Σ; two concrete program states σ1 and σ2 are equal
iff ∀v ∈ V . σ1 (v ) = σ2 (v ). The value of an expression e evaluated
in the context σ is denoted as e⟦σ ⟧. We define a concrete program
execution as in the following:

Definition 3.1 (Concrete execution). A concrete execution proce-
dure Exec : P × Σ→ Σ∪ {ω} is a function that for a given program
p and a concrete input state σin returns the corresponding output
state σout if the program terminates, and the literal ω otherwise.

We consider a first-order language L. We use the letters α , β ,
γ and δ to denote variables from L, and the letters π and ϕ to
designate formulas from L. We use the letter θ to indicate symbolic
program states, that is functions from program variables to logical
terms from L (for a program variable v , the corresponding logical
term is θ (v )). We express the equality of two symbolic program
states θ1 and θ2 as the formula θ1 = θ2 B

∧
v ∈V θ1 (v ) = θ2 (v ).

We denote a logical term computed by evaluating an expression e
in the context θ as e⟦θ⟧.

Assume that {α1 7→ n1, ...,αk 7→ nk } is an assignment of the
variables from L (a mapping from the variables to values). We
say that this assignment satisfies a formula π iff a substitution
of the variables αi with the corresponding values ni (denoted as
π ⟦α1 7→ n1, ...,αk 7→ nk ⟧) evaluates to True. We also introduce a
concretization of symbolic states defined as follows:

Definition 3.2 (Concretization). Let θ be a symbolic state, {α1 7→
n1, ...,αk 7→ nk } be an assignment of the variables from L. A
concretization θ⟦α1 7→ n1, ...,αk 7→ nk ⟧ of θ with the assignment
{α1 7→ n1, ...,αk 7→ nk } is defined as follows:

θ⟦α1 7→ n1, ...,αk 7→ nk ⟧ B λv . θ (v )⟦α1 7→ n1, ...,αk 7→ nk ⟧

that is as a concrete program state (a mapping of program variables
into values expressed using lambda notation) computed by substi-
tuting all the variables αi in the logical terms in the codomain of θ
with the corresponding values ni .

In order to infer a specification, we rely on symbolic execu-
tion [12] that we non-constructively define as follows:

Definition 3.3 (Symbolic execution). A symbolic execution pro-
cedure SymExec : P × Θ → 2L×Θ is a function that for a given
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program p and a symbolic input state θin returns a finite set of pairs
{(π ,θout )}, where π is the path condition and θout is the correspond-
ing symbolic output state. For each assignment of the symbolic
variables {α1 7→ n1, ...,αk 7→ nk }, if this assignment satisfies the
formula π , then σout = Exec(p,σin), given that σin B θin⟦α1 7→
n1, ...,αk 7→ nk ⟧ and σout B θout⟦α1 7→ n1, ...,αk 7→ nk ⟧.

Definition 3.4 (Partial equivalence under σ ). Let p1 and p2 be
programs, σ be a program state. We say that p1 and p2 are partially
equivalent under σ iff at least one of the following holds:
• Exec(p1,σ ) = ω;
• Exec(p2,σ ) = ω;
• Exec(p1,σ ) = Exec(p2,σ ).

Since proving partial equivalence for all inputs is currently in-
feasible when dealing with large real-world programs, this work
focuses on conditional equivalence [10] — a relaxed notion of partial
equivalence that checks equivalence only for a subset of inputs.

Definition 3.5 (Conditional partial equivalence). Let p1 and p2 be
programs, ϕ ∈ L be an input condition. We say that p1 and p2 are
conditionally partially equivalent under an input condition ϕ iff they
are partially equivalent under each input in {σ | ϕ⟦σ ⟧ = True}.

In order to synthesize patches, we rely on a scalable patch gener-
ation methodology proposed in Angelix [26] that infers a compact
synthesis specification based on angelic values [5] and synthesizes
a patch using component-based patch synthesis [26].

Definition 3.6 (Angelic value). Let p be a program, t be a failing
test, e be a program expression and ei be its i-th instance in the ex-
ecution trace of t . Angelic value c is such that replacing expressions
ei with c during the execution of t makes p pass the test t .

Definition 3.7 (Angelic path). Let p be a program, E be a set of
program expressions in p, t be a test. An angelic path is a set of
triples (ei ,c,σ ) where ei is the i-th instance of an expression e ∈ E
appearing in the execution trace of t , c is an angelic value of ei , and
σ represents an angelic state at ei , such that replacing all ei in the
execution trace of t with the corresponding angelic values c forces
(1) the program p to pass the test t and (2) the program p to be in
the state σ when the expression ei is evaluated.

Definition 3.8 (Angelic forest). Let p be a program, E be a set of
program expressions in p, t be a test. Angelic forest At for the test t
is a set of angelic paths for t .

An angelic forest can be extracted as shown in Algorithm 1. For a
given program p with an expression e , this algorithm accepts a test
(a pair of input and output states) and a set of triples { (π ,θc ,θout ) }.
The set of triples is computed using symbolic execution in such a
way that π represents a path condition in p, θc depicts a symbolic
state that the program p reaches when the expression e is eval-
uated along the path π , and θout represents the symbolic output
state computed along the path π . The algorithm iterates through
the given triples and extracts angelic values by solving the path
constraint conjoined with the given input-output relation.

Given an angelic forest, Angelix [26] can construct an expression
from a given library of components that satisfies a given angelic
forest. More formally, for a given angelic forest At and a set of

Algorithm 1: Angelic forest extraction
Data: test (σin,σout ), set of triples { (π ,θc ,θout ) }
Result: angelic forest At

1 At := ∅;
2 foreach (π ,θc ,θout ) do
3 ψ := π ∧ θ = σin ∧ θout = σout ;
4 if isSAT(ψ ) then
5 {α 7→ n1,β 7→ n2, ...} := getSatisfyingAssignment(ψ );
6 c := n2;
7 σc := θc ⟦α 7→ n1,β 7→ n2, ...⟧;
8 At := At ∪ { (e,c,σc ) };
9 end

10 end

11 return At ;

components c1, ..., cn , it produces an expression e constructed from
c1, ..., cn that satisfies the following property:∨

path∈At

∧
(e i ,c,σ )∈path

e⟦σ ⟧ = c

Such e takes the angelic value c for each angelic state σ and there-
fore passes the test t by construction.

4 OUR APPROACH

In this section, we formally define three main components of our al-
gorithm: specification inference, verification condition construction
and patch synthesis.

4.1 Specification inference

Themain intuition of our approach is that it is possible to infer a cor-
rect specification from a reference implementation and synthesize
a patch that enforces this specification in a given buggy program.
Hereinafter, we refer to the given reference implementation as the
program pr and the given buggy program as the program pb .

In order to infer a specification, we use preconditioned symbolic
execution defined as follows:

Definition 4.1 (Preconditioned symbolic execution). A precondi-
tioned symbolic execution procedure PSymExec : P×Θ×L → 2L×Θ
is a symbolic execution, in which each path condition is conjoined
with a given formula. It can be defined as PSymExec(p,θ ,ϕ) B
SymExec(p′,θ ), where p′ B assume ϕ; p.

The implementation of preconditioned symbolic execution is dis-
cussed in Section 5. As a result of adding the condition ϕ, precon-
ditioned symbolic execution is significantly more efficient than
conventional symbolic execution, since it explores only a subset of
program paths that is consistent with the condition ϕ.

For a given reference program and an input condition, we infer
a symbolic summary of the program computed through precondi-
tioned symbolic execution:

Definition 4.2 (Symbolic summary). Let p be a program, ϕ be
an input condition, θ is a symbolic state. A symbolic summary
is a set of pairs Sum(p,θ ,ϕ) B {(π ,θout )} such that {(π ,θout )} =
PSymExec(p,θ ,ϕ).
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For a given buggy program, a suspicious expression and an input
condition, we infer the following specification:

Definition 4.3 (Specification). Let p be a program, e be a program
expression, ϕ be an input condition, θ is a symbolic state over vari-
ables α1, ...,αk . A specification is a set of triples Spec(p,e,θ ,ϕ) B
{(π ,θc ,θout )} such that {(π ,θout )} = PSymExec(p′,θ ,ϕ), wherep′ B
p[e 7→ choose()], choose() is a function that returns a fresh sym-
bolic variable βi each time it is executed. For each path π , θc indi-
cates a symbolic state in the context of which the function choose()
is called when the program is symbolically executed along π .

We say that a summary Sum(p,θ ,ϕ) is complete if for each input
σ satisfying the condition ϕ one of the following holds:
• Exec(p,σ ) = ω;
• ∃(π ,θout ) ∈ Sum(p,θ ,ϕ). π ⟦σ ⟧ = True.

The completeness of a specification Spec(p,e,θ ,ϕ) can be defined
in a similar manner.

In order to simplify further definitions, we assume (without loss
of generality) that all formulas contain only a single variable α
representing program inputs and a single variable β representing
the values of the replaced program expression.

4.2 Verification condition

To check program equivalence, we construct a verification condi-
tion for a given patch using the inferred specification. Ideally, this
condition should express the property “for each input satisfying a
given input condition, if there is a path in the reference program
followed by this input, then there should be a path in the patched
program followed by this input and the outputs produced along
these paths are equal”. We refer to this condition as strict.

Definition 4.4 (Strict verification condition). Let pr be a reference
program, pb be a buggy program, e be a suspicious expression in pb ,
e ′ be a candidate patch, ϕ be an input condition, θin is a symbolic
state over the variable α . A strict verification condition VCstrict for
the program pb [e 7→ e ′] is defined as follows:

∀α∃β
∧

(π r ,θ rout )

(π r ⇒
∨

(πb ,θbc ,θ
b
out )

πb ∧ β = e ′⟦θbc ⟧ ∧ θ
r
out = θ

b
out )

where the symbolic summary {(π r ,θrout )} B Sum(pr ,θin,ϕ) and
the specification {(πb ,θbc ,θbout )} B Spec(pb ,e,θin,ϕ).

However, the above condition cannot be used in many practical
situations, where the existing symbolic execution engines reach
their limits. For instance, we have to restrict the number of explored
paths by performing loop unrolling in up to k iterations. As a result,
the inferred specification is incomplete, and the introduced strict
verification condition may classify two equivalent programs as
non-equivalent. For example, if an input is captured by some path
condition π r , but not captured by any πb , then the programs will be
considered non-equivalent. To address this, we use a more practical
version of the verification condition that we refer to as liberal.

Definition 4.5 (Liberal verification condition). Letpr be a reference
program, pb be a buggy program, e be a suspicious expression in pb ,
e ′ be a candidate patch, ϕ be an input condition, θin is a symbolic
state over the variable α . A liberal verification condition VCliberal

Start with
original

expression

Ref. prog.
summary

Sum(pr ,θ ,ϕ )

Buggy prog.
specification

Spec(pb ,e,θ ,ϕ )
VCliberal Is SAT? Patch found

Candidate
patch

Counter-
example

Is SAT?No patch

Buggy prog.
specification

Spec(pb ,e,θ ,ϕ )

Is SAT? No angelic
values

Angelic
forest

Synthesis
constraint

Component
library

negate no

yes

no

yes

no

yes

conditional eqivalence checker

patch synthesizer angelic forest extractor

Figure 3: Counterexample-guided inductive repair.

for the program pb [e 7→ e ′] is defined as follows:

∀α∃β
∧

(π r ,θ rout )

∧
(πb ,θbc ,θbout )

π r ∧ πb ∧ β = e ′⟦θbc ⟧ ⇒ θrout = θ
b
out

where the symbolic summary {(π r ,θrout )} B Sum(pr ,ϕ,θin) and
the specification {(πb ,θbc ,θbout )} B Spec(pb ,e,ϕ,θin).

Compared with the strict verification condition, the liberal one
only requires that for all intersections between a path condition
π r in the reference program and πb in the buggy program (i.e.
inputs satisfying π r ∧ πb ), the symbolic outputs are the same in
both programs. In the other words, this verification condition only
checks equivalence of the functionality for which a specification
has been inferred from both programs.

4.3 Patch generation

To implement a scalable patch generation that enforces conditional
equivalence of the reference and the buggy programs, we propose
a methodology of counterexample-guided inductive repair (CEGIR)
that effectively combines counterexample-guided inductive synthe-
sis (CEGIS) [1] and a patch synthesis algorithm of Angelix [26].

The overall workflow of the patch generator is shown in Fig-
ure 3 and illustrated by an example in Section 2. It performs a
counterexample-guided refinement loop starting from the origi-
nal expression as the initial candidate patch. The loop combines
three modules: a conditional equivalence checker, an angelic forest
extractor and a patch synthesizer that are described in details below.
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Conditional equivalence checker. In order to verify that a given
candidate patch makes the buggy program conditionally equivalent
to the reference program, we solve the liberal verification condition
given in Definition 4.5. In order to solve the universally-quantified
formula, we check the unsatisfiability of its negation, so as in previ-
ous works [13, 28]. Note that the introduced verification condition
is an ∀∃ formula, therefore its negation also produces a universally-
quantified formula. However, the quantifiers ∀∃ can be replaced
with ∀∀, since for each α the values of β is uniquely identified by
the constraint πb ∧ β = e ′⟦θbc ⟧. Thus, the negation of the liberal
verification condition in Definition 4.5 is

∃α∃β
∨

(π r ,θ rout )

∨
(πb ,θbc ,θbout )

π r ∧ πb ∧ β = e ′⟦θbc ⟧ ∧ θ
r
out , θ

b
out

The above formula is an ∃∃ formula, therefore it can be solved
using an off-the-shelf SMT solver. If the formula is unsatisfiable,
then the patch is correct (conditionally equivalent to the reference
program). Otherwise, a counterexample test is generated.

Angelic forest extractor. Given a counterexample test and a speci-
fication inferred from the buggy program, our algorithm computes
a compact specification for the expression based on angelic values
(angelic forest). The algorithm of angelic forest extraction is similar
to that used in Angelix [26]. It is presented in Algorithm 1. If an-
gelic values cannot be extracted, then the bug cannot be fixed at the
considered location (or the specification is incomplete). Otherwise,
the values are extracted and passed to the synthesizer.

Patch synthesizer. Since the input to the synthesizer is an angelic
forest, we used the Angelix implementation of a patch synthesizer
that extends SMT-based component-based program synthesis [26].
If a patch cannot be synthesized, then the search space (the set
of considered transformations) is insufficient to find a repair. If a
patch is found, it is passed to the conditional equivalence checker.

Proposition 4.6 (Correctness guarantee). Let pb be a buggy
program, pr be a reference program, ϕ be an input condition, e be
a suspicious expression in pb . Assume that e ′ is a patch that is pro-
duced by the CEGIR algorithm (Figure 3) given complete specifications
Sum(pr ,θ ,ϕ) and Spec(pb ,e,θ ,ϕ) as inputs. Then, pb [e 7→ e ′] and pr
are conditionally partially equivalent w.r.t. the condition ϕ.

5 IMPLEMENTATION

We have implemented the tool SemGraft for evaluating our tech-
nique. SemGraft consists of threemain components: preconditioned
symbolic executor, verification condition generator and patch genera-
tor. SemGraft receives a buggy and a reference program, an input
condition and a test suite as input, and produces a patch for the
buggy program as the output. Figure 4 shows the architecture of our
tool. Below, we explain how these components are implemented.

Preconditioned symbolic executor (PSE). PSE is built on top of
KLEE [4] — a widely used symbolic execution engine. To support
preconditioned symbolic execution, the modified version of KLEE
takes the user-defined input conditionϕ in SMTLIB2 format as input.
Specifically, we modify the function fork of the KLEE interpreter
which is called when KLEE encounters a symbolic branch. The path
conditions of both branches are conjoined with the input condition
to determine whether a path is terminated immediately or further

KLEE

Z3 server

Preconditioned

symbolic executor

Strict VC
generator

Liberal VC
generator

Verification condition

generator

Patch generator

Conditional
equivalence checker

Angelix forest
extractor

Patch synthesizer

Figure 4: Architecture of SemGraft.

explored. We integrate Z3 solver [6] with KLEE and pass symbolic
constraints between them for checking the satisfiability of symbolic
expressions. PSE outputs symbolic formula in SMTLIB2 format and
invokes Z3 solver via a wrapper function.

Verification condition generator (VCG). VCG takes the symbolic
summary of the reference program and the specification of the
buggy program, both of which are obtained by executing PSE with
the input condition. Our tool SemGraft supports both kinds of
verification condition as per Subsection 4.2, but the default option
of VCG is the liberal verification condition which is more practical
for real-world programs. We use an open-source library jSMTLIB1
for processing SMT files generated by PSE.

Patch generator (PG). PG takes the liberal verification condi-
tion in SMTLIB2 format and executes a counterexample-guided
inductive repair loop until it finds a patch that satisfies the desired
property. The workflow of PG is shown in Figure 3.

6 EXPERIMENTAL EVALUATION

To evaluate the effectiveness of our approach, we aim to investigate
the following research questions:

(RQ1) Can SemGraft generate repairs for real-world software?
(RQ2) Can SemGraft alleviate the overfitting problem of exist-

ing test suite based program repair techniques using the
reference implementation?

RQ1 is designed to investigate the applicability of our approach
for repairing real-world applications. A previous study [14] has
reported that a straightforward combination of a state-of-the-art
equivalence checking system with counterexample-guided induc-
tive systems scales only to small programs. To be applicable to real-
world programs such as Busybox and GNU Coreutils, our approach
sacrifices discovers a partial specification for checking conditional
equivalence w.r.t. a user-provided condition. Therefore, we also
discuss how such a condition can be derived from existing tests.

RQ2 assesses the correctness of generated patches comparedwith
test-driven program repair approaches. As in previous works [22,
26], we identify a generated patch as correct only if it is syntactically
equivalent to the developer patch (modulo trivial refactorings).

1jSMTLIB website: https://github.com/smtlib/jSMTLIB
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Table 1: Busybox subject programs

Buggy

Prog.

Buggy

Commit

Ref. Prog.

Ref. Prog.

Version

Failure Description Angelix’ SemGraft

sed c35545a sed of GNU sed version 3.01 Failed to handle zero-length match Correct Correct
seq f7d1c59 seq of Coreutils version 6.10 Wrong output when 2 input arguments are equal Correct Correct
sed 7666fa1 sed of GNU sed version 3.01 Wrong output when handling s///NUM Incorrect Correct
sort d1ed3e6 sort of Coreutils version 8.27 Wrong output when handling-kSTART,N.ENDCHAR Incorrect Correct
seq d86d20b seq of Coreutils version 8.27 seq no longer accepts 0 value as increment argument Incorrect Correct
sed 3a9365e sed of GNU sed version 3.01 Failed to handle s/// which has empty matches Incorrect Correct

Table 2: Coreutils subject programs

Buggy

Prog.

Buggy

Commit

Ref. Prog.

Ref. Prog.

Version

Failure Description Angelix’ SemGraft

mkdir f7d1c59 mkdir of Busybox version 1.27.2 Segmentation fault Incorrect Correct
mkfifo cdb1682 mkfifo of Busybox version 1.27.2 Segmentation fault Incorrect Correct
mknod cdb1682 mknod of Busybox version 1.27.2 Segmentation fault Incorrect Correct
copy f3653f0 copy of Busybox version 1.27.2 Failed to copy a file Correct Correct

md5sum 739cf4e md5sum of Busybox version 1.27.2 Segmentation fault Correct Correct
cut 6f374d7 cut of Busybox version 1.27.2 Failed to handle-b 2-,3- like-b 2- Incorrect Correct

6.1 Experimental setup

In order to address the described research questions, we choose the
subjects in our experiments according to the following four criteria.

(1) The subjects are real-world software that is widely used.
(2) Reference programs are available that process the same in-

puts as the buggy programs but exhibit the correct behavior.
(3) The buggy and the reference program are substantially dif-

ferent in their structure.
(4) The developer patches are within the search spaces of our

implementation. By the search space we mean the set of
considered transformations defined through the components
used for component-based synthesis.

The last criteria allows us to reason about correctness of generated
patches (e.g. if the developer patch was not in the search space,
then any generated patch would a priori be identified as incorrect).

Our subjects are 12 real software errors of two open-source C
projects Busybox [39] and GNU Coreutils [40] extracted from (1)
commit logs, (2) bug reports and (3) previous research [4]. Both
Busybox and GNU Coreutils provide many common UNIX utilities,
but Busybox has been implemented with size-optimization, limited
resources, and is mainly used for small or embedded systems. We
employ our tool SemGraft to repair the embedded Linux Busybox
with GNU tools like Coreutils as reference, and vice versa.

To address the second question (RQ2), we compared our tech-
nique with a state-of-the-art test-driven program repair approach,
Angelix [26]. Angelix is closely related to our technique since it also
applies symbolic execution to infer specification and synthesizes
patches. We selected this approach for our evaluation because this
enables us to more objectively investigate the impact of specifi-
cation inferred from a reference program. Specifically, since our
implementation reuses the synthesizer of Angelix, both Angelix
and SemGraft explore the same space of candidate patches. In

order to ensure that the systems have access to the same seman-
tic information about the program, we integrated the algorithm
of Angelix into SemGraft in such a way that both tools use the
same specification inferred from the buggy program (we refer to
this version of Angelix as Angelix’). The main difference of the
two tools is that SemGraft performs a counterexample-guided
inductive repair loop to ensure conditional equivalence with the
reference implementation, while Angelix’ relies solely on the test
suite provided by GNU Coreutils/Busybox developers and stops
immediately when finding an expression satisfying the tests.

All our experiments were performed on Intel Xeon CPU E5-2630
v4 @ 2.20GHz CPU with Ubuntu 14.04 64-bit operating system.

6.2 Summary of experiments

Table 1 summarizes our experiments with Busybox and Table 2
summarizes our experiments with GNU Coreutils. For each pair of
a buggy and a reference program, the tables show the name of the
buggy program and its version in the commit history, the reference
program and its version, a description of the bug, and the results of
executing Angelix’ and SemGraft for repairing the defect.

SemGraft demonstrated that the proposed approach can be ap-
plied to real-world programs. Specifically, it managed to repair all
defects that are repaired by Angelix. Since the workflow of Sem-
Graft also includes inferring specification for a reference program
and checking verification conditions, it required a longer time to
generated patches. Specifically, Angelix’ required 15 minutes on
average to generate patches, while SemGraft required 45 minutes.

In the experiments, SemGraft inferred specifications consisting
of up to 81 paths from a reference program and up to 250 paths
in a buggy program. The number of paths, in general, depends on
the structure of the buggy and the reference programs, bounds
used for symbolic execution and the chosen condition ϕ. Typically,
the specification inferred from the buggy program includes more
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if (!rhs_specified)
{

if (eol_range_start == 0 || eol_range_start == 3)
eol_range_start = initial;

field_found = true;
}

(a) Patch generated by Angelix’ based on tests.

if (!rhs_specified)
{
if (eol_range_start == 0 || initial < eol_range_start)
eol_range_start = initial;

field_found = true;
}

(b) Patch generated by SemGraft based on reference program.

Figure 5: Generated patches for cut (ver. 6f374d7).

paths due to additional symbolic variables injected into the buggy
program for suspicious expressions.

As can be seen from the tables, SemGraft generated repairs
equivalent to developer patches for all considered examples, while
Angelix’ that relies only on tests repaired less than half of the
defects correctly. This shows that the reference implementation
indeed can help to alleviate test overfitting.

6.3 Deriving input condition

An input condition used for enforcing conditional equivalence of
the patched and the reference program is an important part of our
approach and it has to be defined by the user. We use an example
of a bug in cut (ver. 6f374d7) to demonstrate how such a condition
can be defined in practice. cut extracts sections from each line
of its input. The buggy version of cut of GNU Coreutils wrongly
interprets the command -b 2-,3- as -b 3- (extract input bytes
staring from the third byte) instead of -b 2- (extract input bytes
staring from the second byte). The developer provides the following
two tests that cover the buggy functionality:

echo -ne '1234' | cut -b 2-,3-
echo -ne '1234' | cut -b 3-,2-

For both of these tests, the expected output is 234. The above two
tests cover program behavior for two concrete pairs of indexes (2,3)
and (3,2). However, this is insufficient for a test-driven program
repair to produce a patch that generalizes beyond the tests.

In this work, we propose to define an input condition for gener-
ating conditional equivalence-enforcing patches by parametrizing
existing tests. Note that the purpose of parametrizing the test is
to make generated patches generalize, yet ensuring tractability of
specification inference. Therefore, the user should parametrize the
essential part in the test related to the failure. In this case, we inject
parameters instead of the indexes {2,3} that affect the way the data
is processed. As a result, we obtain the following input:

echo -ne '1234' | cut -b α0-,α1-

where α0 and α1 indicate the injected parameters. Given such a
parametrization, the condition ϕ will be accordingly defined as:

ϕ Barg0[0] = “ − ” ∧ arg0[1] = “b”∧
arg1[1] = “ − ” ∧ arg1[2] = “,” ∧ arg1[4] = “ − ” ∧ in = “1234”

where arg0 and arg1 denote command-line arguments, in is the
standard input stream.

This example demonstrates that defining an input condition for
our approach may require a small effort from the user. However, we
believe that such a condition can be potentially derived automati-
cally. One possible way to do that would be to execute the failing
test concolically to collect input constraints (e.g. using ZESTI [23]),
and construct an input condition for our approach by generalizing
the obtained constraint. We leave this for future work.

6.4 Impact of reference program

In this section, we show how the use of a reference implementation
can enable SemGraft to find a correct path, while Angelix’ finds
a plausible (passing the given tests), but incorrect repair.

For the discussed bug in cut program, Angelix’ uses the tests
given above to construct a patch in Figure 5a. This patch adds
a condition into the program that changes the way how indexes
in the given command are handled. The expression includes the
disjunct eol_range_start == 3 that ensures that the index 3 is not
used by the command -b 2-,3-. However, this condition does not
generalize to other values of the indexes that can appear in such
command but merely overfit the given test.

As opposite to Angelix’, SemGraft extracts a specification from
the buggy and the reference programs via preconditioned symbolic
execution with ϕ. In this example, it extracts 30 paths from the
buggy program and 18 paths from the donor program (Busybox
cut). Then, it performs a counterexample-guided inductive repair
loop until it finds a patch that enforces conditional equivalence of
Coreutilscut and Busyboxcutw.r.t.ϕ. Specifically, after obtaining
a candidate patch as in Figure 5a, it generates a counterexample
test -b 3-,4- for which the output of Coreutils cut diverges from
Busybox cut. Based on this test, it extracts the angelic path

{ (β0,True, {initial 7→ 3,eol_range_start 7→ 0, }),

(β1,False, {initial 7→ 4,eol_range_start 7→ 3, }) }.

Given the extracted path, SemGraft generates the patch in Fig-
ure 5b, which is identical to the developer repair. SemGraft also
proves that it is correct (equivalent to Busybox cut) for all possible
combinations of indexes in the described command.

7 THREATS TO VALIDITY

Internal validity. The main threat to internal validity is the man-
ual construction of the input condition ϕ for our experiments that
were based on the negative, developer-written tests. In general,
creating such conditions may not be trivial. However, existing tech-
niques like delta debugging [48] could help the user to minimize the
test input arguments still showing the buggy behavior, and hence,
to simplify the input condition. Additionally, the performed manual
inspection of the experimental results might be error-prone. To
mitigate this, two authors of the paper double-checked the created
input conditions and the generated patches.

External validity. The main threat to external validity is that the
chosen selection of subjects may not generalize to other programs.
We could not use existing repair benchmarks [17, 36] due to the
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lack of reference programs. However, we focused on subjects from
the GNU Coreutils and Busybox, which are well-known throughout
the community and provide implementation of similar function-
ality. Another threat to external validity may be the scalability of
our approach. It mainly depends on the number of explored paths
during the symbolic analysis and the size of the generated ver-
ification condition. Therefore, among others, we introduced the
user-defined correctness property, which enables the limitation
of the search space to a practical usable scope. Furthermore, the
approach is limited by the capabilities of the underlying symbolic
execution engine, which we tried to improve by using an efficient
preconditioned symbolic execution approach.

Construct validity. The main threat to construct validity is the
correctness of our implementation because our statement about the
conditional partial equivalence of the generated patch holds only if
the implementation is correct. We implemented our approach as
extensions of existing works: KLEE symbolic execution engine and
a synthesizer adapted from Angelix [26]. Therefore, our extension
inherits the incorrectness of the baseline. However, face-validity
showed that the results are consistent with the expected outcome.

8 RELATEDWORK

8.1 Program repair

In the last years, several program repair approaches have been de-
veloped. These approaches can be classified into syntax-based and
semantics-based techniques. Syntax-based (generate-and-validate)
program repair techniques such as e.g., GenProg [18, 42], AE [41],
RSRepair[30] and ACS [44] require subtasks including fault local-
ization, patch generation and execution of regression test cases.
Mechanizing these tasks has received significant attention from
the automated and search-based software engineering community.
Approaches developed by Le Goues et al. [16, 18, 42], Martinez and
Monperrus [7, 24] showmeaningful results towards the automation
of bug fixing. The main idea of these approaches is to use failed
test cases to localize potential faults and then apply mutations to
the source code until the program satisfies all unit test cases. The
mutations that are applied to the program code can range from
small changes like modification, addition or removing a single code
line [18, 42] to complex edit operations [24] mined from software
repositories. Relifix [35] utilizes previous program versions in order
to perform automated repair of regression bugs, however it relies
on syntactic similarity of the previous and the buggy programs,
which distinguishes it from our approach. The quality of patches
produced by test-based repair approaches may be low, since the
patches may overfit the test data. A study on the correlation of
patch quality with the quality of the test-suite guiding the repair
has been recently conducted [47]. Semantics-based techniques like
SemFix [27], Nopol [45], DirectFix [25], SPR [21], Angelix [26] and
JFIX[15] split patch generation into two phases. First, they infer a
synthesis specification for the identified program statements. Sec-
ond, they synthesize a patch for these statements based on the
inferred specification. However, since most of semantics-based
techniques rely on tests as the correctness criteria, the inferred
specification only captures the property of “passing the tests”.

Our approach seeks to solve the test overfitting problem in pro-
gram repair. We show that, subject to the availability of a reference
implementation, our scalable symbolic analysis can produce higher
quality patches and provide partial correctness guarantees.

8.2 Software transplantation

Automated software transplantation [2, 8, 29] tools like µScalpel [3]
and CodeCarbonCopy [31] aim at transplanting new functional-
ity from a donor application into a recipient application. Code-
Phage [32] can fix program errors like out of bounds access, integer
overflow, and divide by zero errors. They focus on finding an er-
ror checking code in the donor application that can serve as a
compensation for a missing check in the host application. Since
their approach tries to copy code, it is necessary to translate the
check from the data structures and name space of the donor into
an application-independent representation suitable for insertion
into the recipient application. The advantage of SearchRepair [11]
compared to other repair approaches is the use of semantic code
search [33, 34] to identify suitable code fragments for repair. Our
approach differs from software transplantation literature, since we
do not seek to inject any new functionality lifted from a donor
program. Our goal is to increase the quality of generated patches
using a different correctness criteria, namely the reference program.
We also differ from recent works on grafting of code clones [49],
since this line of work seeks to achieve greater test-reuse across
code clones for the sake of differential testing.

8.3 Equivalence checking

Lahiri et al. [13] proposed an approach to find the rootcause for
equivalence failures by leveraging semantic similarity between two
program binaries. Since they aim to extract a complete specification,
their approach scales only to small programs. Our work sacrifices
completeness for the sake of applicability by checking conditional
equivalence of a buggy program and a reference program w.r.t. a
user-defined input condition.

9 CONCLUSION

We proposed a methodology of generating patches based on a refer-
ence implementation. Our technique addresses the test-overfitting
problem by providing additional correctness guarantees. Specifi-
cally, it synthesizes a conditional equivalence-enforcing patch w.r.t.
a user-defined input condition. Our experiments demonstrated that
our method scales to real-world programs such as GNU Coreutils
and Busybox and helps to generate more correct repairs.
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