
Rete: Learning Namespace Representation for
Program Repair

Nikhil Parasaram, Earl T. Barr, and Sergey Mechtaev

Abstract—A key challenge of automated program repair is
finding correct patches in the vast search space of candidate
patches. Real-world programs define large namespaces of vari-
ables that considerably contributes to the search space explosion.
Existing program repair approaches neglect information about
the program namespace, which makes them inefficient and
increases the chance of test-overfitting. We propose RETE, a
new program repair technique, that learns project-independent
information about program namespace and uses it to navigate the
search space of patches. RETE uses a neural network to extract
project-independent information about variable CDU chains, def-
use chains augmented with control flow. Then, it ranks patches by
jointly ranking variables and the patch templates into which the
variables are inserted. We evaluated RETE on 142 bugs extracted
from two datasets, ManyBugs and BugsInPy. Our experiments
demonstrate that RETE generates six new correct patches that
fix bugs that previous tools did not repair, an improvement of
31% and 59% over the existing state of the art.

Index Terms—Program Repair, Deep Learning, Patch Priori-
tisation, Variable Representation.

I. INTRODUCTION

Automated program repair struggles to find correct patches
in vast search spaces of patches. First, exploring a large search
space takes time, so program repair techniques can fail to find
a patch because they exceed their time budget. Second, even
if a program repair technique finds a patch that passes the test
suite, this patch may be incorrect, i.e. it may overfit the test
suite, because test suites incompletely capture specifications.

Every program defines a namespace and uses scoping rules
to control variable visibility. Existing program repair algo-
rithms neglect information about program’s namespace when
searching for repairs, which reduces their effectiveness and
increases test-overfitting [1]. Patch generation techniques that
use machine learning usually fall into three categories: They
(1) ignore information about program variables, effectively
only learning to choose the template into which to insert
variables [2]; (2) only extract variables from local context [3],
[4]; or (3) learn information about program namespace im-
plicitly [5], but have difficulty handling long-range dependen-
cies [6]. At each program location, many visible variables
are not local, so tools that fall into the first two categories
cannot effectively synthesize patches that require non-local
visible variables. CoCoNut [5] falls into the third category,
so, in principle, it can learn long-range dependencies, but
our experiments (Table IX) show that it fails to generate
five correct patches because it prefers variables in the local
neighbourhood to more suitable visible variables.

We propose RETE, a new program repair technique, to
address this problem. RETE prioritises visible variables in a

program namespace by their likelihood of being used at a
given program location. In the spirit of neuro-symbolic com-
putation [7], RETE combines program analysis and machine
learning to learn rich project specific semantic information
about the namespace. Specifically, it uses variables’ CDU
chains, def-use chains augmented with control flow, to learn
latent, low-dimensional representations of program variables
that capture their semantic affinities.

RETE generates patches by inserting program variables into
patch templates. It separates patch template generation and
prioritisation into two steps and defines an interface for each
step to facilitate the use of different algorithms for each one.
Thus, RETE is a framework that integrates existing program
repair approaches. RETE prioritises patches by combining
the ranks of variables and the ranks of patch templates into
which the variables are inserted into a single ranking. Any
combination of tools can be used to extract these individual
template and variable ranks. We implement three instances
of template ranking using existing approaches: (1) the plastic
surgery hypothesis [8] that extracts templates from the buggy
program, mutates them, and prioritises the mutated templates
based on the syntactic distance from the donor code; (2)
Prophet’s enumerative synthesiser and machine learning based
prioritiser [1]; and (3) Trident’s constraints-based synthe-
siser [9] and combine them with our various variable ranking
algorithms (Section III).

We implemented RETE for C and Python. We chose C
because of C’s importance and because many program repair
techniques have targeted it. We target Python because of
its ever-increasing importance and the fact that its default
dynamic typing heightens the importance of namespace in-
formation, since without static types, every visible variable is
a candidate for fixing a bug.

To evaluate RETE, we use two benchmarks: 107 bugs
extracted from BugsInPy [10] and 35 bugs extracted from
ManyBugs [11]. We extracted these bugs to match RETE’s
defect class described in Section III-A (with a restriction
to inserting/modifying single line statements). The evaluation
demonstrates that RETE generates patches for 29 of our 107
BugsInPy bugs, and generates 8 for our 35 bugs ManyBugs.
When we adapted Prophet to work on Python, despite its
age, it outperformed the previously available state of the art,
CoCoNut: fixing 21 bugs to CoCoNut’s 16 bugs on our dataset
(section V). On Python, RETE outperforms Prophet-for-Python
by six correct fixes. When using RETE’s variable prioritisation,
Prophet-for-Python generates 3 more bugs than it does on
its own. On the ManyBugs dataset, Trident’s constraint-based

algorithm, augmented with RETE’s template enumeration and
variable prioritisation, generates more correct patches than the
state of the art tools SOSRepair [12], Prophet [1] and Trident
on their own.

The paper makes the following contributions:
• We introduce the problem of learning program names-

pace and present two solutions using deep learning and
feature engineering which use information from program
analysis.

• We present a generic algorithm to integrate variable
prioritisation into existing repair techniques, instantiated
for the Plastic Surgery Hypothesis, Prophet and Trident.

• We realise these contributions in RETE, and evaluate them
on real bugs in C and Python projects.

RETE’s implementation, and the scripts and data used to
evaluate it, can be found in the accompanying package https:
//github.com/norhh/Rete

II. OVERVIEW

To repair real-world bugs, program repair has to explore
huge search spaces of candidate patches. Consider the devel-
oper patch for a bug in Black [13] in Figure 1a. Even if we
restrict the number of field accesses with the operator ’.’ to
the maximum of two, there are 11 118 visible variables and
object field accesses at the fix location. A popular approach
for reducing the search space, employed by a large number of
existing program repair tools, is to ignore the variables that are
not local to the fix. However, considering only local variables
makes some bugs impossible to repair and increases the
likelihood of generating test-overfitting patches. For example,
the field access self.previous_line.is_comment in
Figure 1a, which is used in the fix, does not exist anywhere
else in the entire program. Even assuming that a prioritisation
algorithm shortlists 100 candidate variables and we know the
exact fix template given in Figure 1b, constructing such a patch
would require examining 4950 possibilities to fill the variables
into the template.

Program repair approaches relying on program synthesis
struggle to generate patches for programs with large names-
paces. For example, Trident [9] enumerates patches using
patch templates from its search space and checks whether
they satisfy the specification constraints. Applied to the bug
in Figure 1, for simplicity, let’s assume that Trident uses T
patch templates, Trident must enumerate ca. 8–9 orders of
magnitude (T × 111182) patches to find this fix, a clearly
infeasible number of patches. Prophet [2] and SPR [14] map
variables to the values that they hold during test execution.
They use this mapping to instantiate templates. If the number
of candidate variables are large, this can lead to test-overfitting,
since many variables can take the same values during test
execution, leaving these tools unable to differentiate them.

RETE efficiently synthesises the correct patch in Figure 1a
by prioritising the correct patch in the first 1000 patches. To do
this, RETE employs a novel method to rank variables using a
project-independent representation of a program’s namespace.

A. RETE’s Template Generation

RETE’s core contribution, learning program namespaces, is
orthogonal to existing program repair algorithms. Thus, RETE
provides an extensible framework for program repair, which
seamlessly integrates existing patch generation algorithms.
We consider three archetypal algorithms: the plastic surgery
hypothesis [8], Prophet’s enumerative synthesiser [1], and
Trident’s constraints-based synthesiser [9].

We now show how RETE uses the plastic surgery hypoth-
esis. Our interpretation of the plastic surgery approach starts
with existing program statements as partial patches and edits
them using one of three operations: replacing a variable with
a hole , appending an operator with holes for its operands,
or removing an operator and its operands. The synthesis
algorithm searches for a minimal edit patch. The cost of
adding or removing an operator equals the number of holes
added or removed. Consider the statement x + a × b, the set
{x+y, a+self .W}, and the rewrite chain x+y →1 x+ 1 →2

x+ 1× 2 →3 x+a× 2 →4 x+a×b. The chain shows that
x+a×b is 2 edits from the set because the cost of both→1 and
→2 is 1 and the cost of both →3 and →4 is 0. Section III-D
explains how we set the edit costs. RETE later fills the variable
holes with concrete variables using the ranking it learns.

In Figure 1c, the code block in lines 1-5 (The if block with
the comment) is two edits away from the required patch in
Figure 1c:
1.self.pl → is_decorator
2.self.pl.is_decorator → self.pl.is_comment
where self.pl represents self.previous_line

This patch is correct, if self.previous_line is not
None1. As is common practice in APR, RETE guards such
deferences with NoneType checks. Given these edits and its
NoneType heuristic, RETE generates the human-equivalent
patch as shown in Figure 1a.

B. RETE’s Variable Prioritisation

RETE’s variable ranking model shortlists the most likely
variables at the location of the fix based on a par-
tial patch. This reduces not only the number of vari-
ables to examine but also the likelihood of test-overfitting.
In Figure 1c, the correct variables to fill the holes in
" 1 and self.previous_line. 2" are ranked 4th and
5th, much less than 782 and 12, the number of visible variables
at each hole. The rank for the second variable is not as good
as that of the first since no identifier that could fix the problem
appeared in a similar context sufficiently often for the model to
learn it. Purely ML-based approaches, e.g. those using Neural
Machine Translation (CoCoNut), struggle to fix such bugs,
since the field, is_comment is too sparse for the model to
learn to associate it with self.previous_line.

III. RETE

The central “signal” hypothesis of this project is that vari-
ables with similar semantics are used in similar ways across

1NoneType is Python’s unit type.

https://github.com/norhh/Rete
https://github.com/norhh/Rete

i f (
i s _ d e c o r a t o r
and s e l f . p r e v i o u s _ l i n e

) :
re turn 0 , 0

+ i f (
+ i s _ d e c o r a t o r
+ and s e l f . p r e v i o u s _ l i n e
+ and s e l f . p r e v i o u s _ l i n e . is_comment
+) :
+ re turn 0 , 0

n e w l i n e s = 2
i f c u r r e n t _ l i n e . d e p t h :

n e w l i n e s −= 1

(a) The developer fix for a bug in Black.

i f (
i s _ d e c o r a t o r
and s e l f . p r e v i o u s _ l i n e

) :
re turn 0 , 0

i f 1 and 2 :

re turn 0 , 0

n e w l i n e s = 2
i f c u r r e n t _ l i n e . d e p t h :

n e w l i n e s −= 1

(b) A template for a hypothetical repair tool.

i f (
i s _ d e c o r a t o r
and s e l f . p r e v i o u s _ l i n e

) : # Code b l o c k used t o g e n e r a t e f i x
re turn 0 , 0

i f 1 and s e l f . p r e v i o u s _ l i n e . 2 :

re turn 0 , 0

n e w l i n e s = 2
i f c u r r e n t _ l i n e . d e p t h :

n e w l i n e s −= 1

(c) Edited locations with abstract variables.

Fig. 1: A bug in Black Python formatter, and how it can be fixed with patch templates.

code bases; this usage signal complements and can supersede
signal in raw lexical similarity of names. We introduce con-
ditional def-use chains to capture usage signal.

We consider a C-like programming language L. Program
p ∈ L is a set of function declarations. In p, let V be its
set of variables, and S be the set of all statements in L.
Let represent a missing variable and V = V ∪ { }. The
language L extends L by replacing V with V . Let δ ∈ ∆
be a patch; δ(p) denotes the application of δ to p. ∆ ⊂ ∆
is a set of patch templates where δ (p)∈L ,∀δ ∈ ∆ . δ (v)
denotes instantiating δ with the variables v ∈ V n, where
|v| = n. RETE’s defect class [15] consists of those bugs that
instantiations of its patch templates can fix.

A. The Patch Ordering Problem

Generate-and-validate program repair approaches find
patches by enumerating and testing a large number of candi-
date patches. Typically, the first patch found that enables the
program to pass the test suite is returned as the solution. Thus,
the order in which the patches are enumerated is crucial. First,
it affects patch quality since not all patches that pass the tests
are correct. Second, it affects the speed of patch generation
since it determines the number of test executions required to
find a suitable patch.

Problem 1 (The Patch Ordering Problem): Given a test
suite T , and a program p that does not pass T and a set of
patches ∆, find the bijection O : ∆→ [1..|∆|] such that

argmax
O

P
(
O(δi) < O(δj) | δi(p) is correct

∨
(
δi(p) is plausible ∧ δj(p) is implausible

))
,

where δ(p) is plausible if it passes all tests in T and implau-
sible otherwise.
O is a patch ordering that simultaneously maximises the

probability that correct patches precede plausible patches,
and the probability that plausible patches, in turn, precede
implausible patches.

RETE solves a restricted version of this general problem: it
optimises O only over instantiated templates δ (v). Because of

this restriction, RETE decomposes the patch ordering problem
into two subproblems: that of ordering templates, aka δ ,
(Section III-B) and, for each template, the problem of finding
the correct variables to fill those holes, a.k.a. finding v
(Section III-C).

B. Prioritising Templates via Distance

Let α[vars(α)/] be the buggy context with holes replacing
all its variables, vars(α). We formulate the problem of finding
the best template for a particular bug in the program p as
a graph search problem, starting from α . Let G = (∆ ∪
{α }, E) be our graph. The distance function d : E −→ W
weights each (δs, δt) = e ∈ E. Templates are ordered by
their distance from α .

Different APR approaches define d differently. Section IV-A
gives our definition. Techniques such as DirectFix [16] define
d as the minimal number of sub-expression substitutions
required to construct the patch from a buggy statement. Tech-
niques such as Prophet [2] order templates using Maximum
likelihood estimation, implicitly defining d using probability.

C. Learning Namespace Representations

In this paper, we introduce namespace representations learn-
ing, which aims to learn latent, low-dimensional representa-
tions of program variables, which preserves semantic proper-
ties of variable uses, and thus facilitates such applications as
variable prioritisation for patch synthesis.

We now describe how we capture a variable’s uses in a Con-
ditional DU (CDU) chain, a new data structure that augments
a classical DU chain with control information. A variable may
have many CDU chains, so we describe how we sample them
before describing how we use them to learn embeddings that
capture affinities between variables (their names and uses) and
holes, each of which represents a potential variable use.

The predicate D : S × V indicates if a variable is defined
in a statement; the predicate U : S × V indicates if a variable
is used in a statement. For a variable v and a definition d (i.e.
D(d, v)), we say that d reaches an arbitrary use-statement s
(i.e. U(s, v)), if there exists at least one execution path from d
to s along which no other statement s′ 6= s satisfies D(s′, v). A

Embeddings

a = 0

Variable
Prioritiser

A Large Language Model

P (token =)> b

Fig. 2: Processing a sample CDU chain.

def-use chain of the variable v is the sequence of all statements
s1, ..., sn s.t. 1) D(s1, v)∧

∧n
i=2 U(si, v); 2) The definition of

v in s1 reaches si for all i > 1 along at least one path; and
3) ∀i, j s.t. i < j ∧ i 6= 1, si precedes sj in the source code.

A node d of a graph b-dominates a node e if every path
starting from a node b to e traverses d. Domb(d) denotes the
set of all nodes that b-dominate the node d. For the statement
s in program p, let (g1 . . . gn) be the set of conditional
statements in p each of whose elements gi dominate s. For
the sequence seq = 〈a1, . . . , an〉, we write x ∈ seq to denote
∃i ∈ {1, . . . , n}. x = ai.

Definition 1 (Conditional Definition-Use (CDU) Chain):
For the variable v, a conditional def-use chain w.r.t. an initial

node b in a control flow graph is the sequence of statements
c = 〈s1, . . . , sn〉 where
• A subsequence of c is the DU chain d of the variable v;

and
• Any statement si /∈ d is a conditional statement s.t.

∀sj ∈ d. i < j =⇒ si ∈ Domb(sj).
CDU chains are formed by interleaving a DU chain of v

with all conditional statements that b-dominate a statement
in the underlying subsequence of the DU chain. In c, the
condition gi precedes the arbitrary element s in c’s DU chain
if gi dominates s. Definition 1 non-deterministically orders
the conditions w.r.t. each other, subject to the constraint that
a conditional must precede all statements it dominates. Using
b-domination allows us to choose a starting node closer to a
variable’s uses than a program’s entry.

Our intuition is that CDU chains of a given length likely
have more information about their variable than arbitrary
code snippets of the same length. CDU chains are related
to program slices, which consist of all the statements and
predicates that might affect a set of variables at a program
point [17]–[19]. Unlike slices, CDU chains ignore, by design,
a variable’s data dependencies for two reasons: 1) to avoid the
data dependency clusters that bloat many slices [20] and 2) to
focus on capturing variable-specific signal.

The variable prediction task takes a list of statements with
a hole at a variable use and predicts the correct variable to fill
that hole. RETE models as a masked language modelling prob-
lem. Pre-trained, masked language models for code, based on
transformers [21], fine-tuned with a small amount of labelled
data, achieve state-of-the-art performance in different software
engineering applications [22]–[24]. Accordingly, RETE adopts
this approach to learn affinities between variables and their
uses in CDU chains.

To train its variable prioritiser model, RETE repeatedly
serialises each CDU chain and masks each use of a variable,
not just the defined variable, ignoring all other tokens. For
instance, three CDU chains containing five variable uses would
generate 15 distinct masked training instances. Figure 2 shows
us how the model works. For a CDU chain for the variable
a ending with a > b, one instance replaces the final use of
a with to mask it out and then feeds it to a pre-trained
large language model to convert the input into a sequence
of embeddings. RETE then runs these embeddings through a
feed-forward network with a softmax layer to realise the task-
specific fine-tuning.

Many CDU chains can traverse a given buggy line, so, while
its individual CDU chains may be short, the aggregate length
of a variable’s set of CDU chains can be large. Transformers
take a maximum length sequence of tokens as input. Thus,
the serialisation of a variable’s CDU chains may need to
be compressed. Section IV-B details how RETE’s framework
serialises and compresses CDU chains.

D. Jointly Prioritising Patches

RETE ranks patches by combining template and variable pri-
orities. RETE uses min priority queue, ordered by Equation (1).
Equation (1) defines score(δ (v)) using td(δ) ∈ N which
gives δ , the priority of the template and P (δ , , v) ∈ [0, 1],
the probability of v ∈ V being the candidate to fill the single
hole . Template distance td (Section III-B) calculates the
distance of the template from the source node extracted from
the localiser (i.e. td(δ) = d(δS , δ)). The variable prioritiser
described in Section III-C provides variable probabilities. A
Lower score means a better patch.

score(δ (v)) = td(δ) +
θ

|h(δ)|
∑

i∈ h(δ)

1

P (δ , i, vi)
(1)

where θ is a constant we use to control the growth of the
summands, and the function h(δ) returns the set of holes
in δ . We use 1

P (δ , i,vi)
in the summation because it gives

lower score for variables with a higher probability. As the
range of td(δ) is in W, various template scores differ by
integers, the variable prioritisation score starts to matter when
P (δ , i, vi)< θ, as the score breaks the barrier of 1. We use
θ = 0.073 as this value performed the best in our experiments.
We prioritise patches by separately prioritising templates and
variables rather than directly prioritising instantiated patches
because the number of instantiated patches is much larger than
the number of templates, making it infeasible in practice.

IV. RETE’S IMPLEMENTATION

Figure 3 shows RETE’ architecture, which has three main
components: (1) Patch Generator, (2) Patch Prioritiser com-
bining Variable Prioritiser and Template Prioritiser, and (3)
Patch Checker. RETE’s implementation takes in a buggy
program p and a suspicious line number and feeds p to its
patch prioritiser, which combines its template and variable
prioritisers to produce a patch that it checks with its Patch

Buggy Program Variable
Prioritiser

Patch Prioritiser

Candidate Patch

Patch
OKFail

Suspicious Line

Patch
Generator

Patch
Checker

Template
Prioritiser

Fig. 3: Architecture of RETE.

Checker. If the check fails, RETE generates and checks patches
until it finds a successful patch. RETE implementation is a
framework, so its implementation components are not fixed;
they can be instantiated with various existing approaches. For
instance, its checker can be anything ranging from a test suite
to a patch specification extracted from symbolic execution.

When realised as a generate-and-validate approach, RETE
prioritises tests that failed the previous run for efficiency in
practice. To combine templates and variable priorities, RETE
lazily constructs a priority queue ordered by Equation (1).

A. Lazily Prioritising Templates

To realise RETE’s template prioritisation scheme (Sec-
tion III-B), we need to define the buggy context, our templates,
and a distance function for our templates, then use these com-
ponents to build a weighted graph. To define the buggy con-
text, we use fault localisation. Many different localisers have
been used in APR for C. For our C dataset, we use the Ochiai
statistical fault localisation [25], since it performs well [26].
Variation in localisation has confounded tool comparison in C.
Perhaps, for this reason, prior work on Java APR [27], [28]
assumes perfect localisation, as it facilitates tool comparison.
CoCoNut is the only previous Python APR work of which we
are aware, and it assumes perfect localisation. For our Python
dataset, we follow its lead.

We turn to the confirmation of the Plastic Surgery Hypoth-
esis (PSH) [8] to define our templates. PSH shows that many
fixes can be constructed from existing code in a codebase.
Relying on the PSH, we construct templates starting from
atomic statements surrounding the buggy context. We templa-
tise these statements by replacing their variables with holes,
one at a time. A statement with three variable uses would
generate three distinct templates, each with a single hole. We
start with only single-holed templates to preserve signal in the
names of the other variables in keeping with RETE’s central
conceit: the application of Firth’s dictum [29] to variables.

The distance between two templates is the difference in
the number of holes each has. Thus, we prefer templates
with fewer holes, in keeping with PSH, are likely to generate
instantiations closer to the buggy statement in edit distance.

Starting from this initial set of templates, RETE’s framework
uses Dijkstra’s algorithm [30] to lazily construct its template
graph. First, the framework interconnects the initial templates
with zero cost edges to favour their use. It weights subse-
quent edges by the distance of the templates they connect.

It moves to the next template only when it has enumerated
all variable instantiations of the current template whose score,
Equation (1), exceeds the distance of the next template. RETE’s
framework constructs new templates from existing ones by
replacing, appending, or removing statements. Replacing a
statement cannot change the number of holes: it must both
fill a hole and replace a variable with a hole. Append and
remove change the number of holes, so long as the resulting
template has at least one hole, i.e. remains a template. When
filling a hole, we try each of the variable prioritiser’s top 30
variables. This restriction was because maintaining all possible
bindings is quite expensive, and we observed that it was
unnecessary in practice on our corpus. We hypothesize that
this observation generalises. We picked 30 as it effectively
balanced cost and performance on our corpus. When creating
a template, RETE’s framework nondeterministically chooses
an operation. We chose the templates surrounding the line
of code as the set of initial templates, and we restricted the
template size to a single statement and the size of the set to
20 templates.

B. Variable Prioritisation with CodeBert

We instantiate the pre-trained component of RETE’s variable
prioritiser (VP) with CodeBERT [31] and fine-tuned CodeBert
for C and Python datasets. Since CodeBert is not trained for
C, we replaced C-specific symbols, such as NULL with 0,
and dropped volatile quantifiers. We then feed this modified
CDU chain to CodeBert to produce embeddings for the task-
specific model that fine-tunes CodeBert to RETE’s variable
prioritisation task: to accurately predict variables for holes in
CDU chains. VP’s task-specific fine-tuned subcomponent is
a feed-forward layer with a softmax function, implemented
using Huggingface’s open-source transformer [32].

At inference time, we have a buggy statement with a hole.
We gather the CDU chains that share this statement, as they
comprise the variables that can fill the hole. Under preliminary
experimentation, concatenating these chains was inaccurate, so
we decided to build a query by interleaving them. To do so,
we order statements by reachability, then line number. If one
statement is reachable from another in the program’s control
flow graph, the statement that is reached follows the other
in the interleaving; if the statements are mutually reachable or
unreachable, we order them by line number. We perform these
actions to maximise variable diversity, as we want to improve
the cases where uncommon variables are used to fix the bug
by increasing unique variable information in our CDU chains.

To fine-tune the model, we trained the task-specific sub-
model on interleaved CDU chains so that the training data
matches the prediction queries. To produce the shared hole
needed for interleaving, we converted each input program into
a set of single-holed programs, each with a different variable
replaced with a hole. We interleaved the set of CDU chains
that pass through each single-holed program’s holed statement.

CodeBERT’s window size is 512 tokens. In our corpus, 5692
CDU chains pass through a buggy line on average, each having
an average length of 34. Naïvely interleaving these produces

Feature Description

lvalue count of variable definitions
rvalue count of variable uses
for_init count of for loop initialisation uses
for_cond count of for loop condition uses
for_lcv count of loop control uses
while_cond count of while loop condition uses
if_cond count of if condition uses
hole_to_def distance between hole and the def
last_use distance to last use
hole_window count of uses in k lines around hole
operator_histo multiset of counts of operator/function uses
is_global local/global variables

TABLE I: The features that our random forest uses. Each
feature is tracked for each variable in scope.

inputs whose average length is 5692 × 34 > 512. To cope
with this mismatch, we compress our inputs. First, we consider
only cardinality at most five subsets of the CDU chains that
pass through a single-holed statement. Then pick that subset
whose chains maximise the number of distinct variables that
they use, to maximise, as with dropping duplicates above, to
increase diverse information on variables. This is the NP hard
unweighted maximum coverage problem [33], whose solution
we greedily approximate [34]. If required, we next reduce the
number of conditions in each chain in the interleaving to the
two that use the most variables. If the input is still too long,
we truncate it.

a) Random Forest Variable Prioritiser: Several existing
program repair techniques [4], [35] use machine learning with
feature engineering to tackle test-overfitting. These techniques
include features related to program variables, some of which
are language-specific and not applicable to C or Python. In
the spirit of these techniques, we implemented an alternative
approach, based on feature engineering. This approach uses
a random forest, and the language-independent features in
Table I, to rank program variables. We train this random forest
using Scikit-learn [36].

V. EVALUATION

This evaluation uses many configurations of APR tech-
niques, so it starts by analytically defining APR components,
then using those components to establish a new taxonomy. It
then turns to describing experiments whose aim is to answer
the following questions:
• Do our conditional definition-use (CDU) chains contain

strong signal about variable usage? (Section V-B)
• Is RETE’s prioritisation strategy effective? (Section V-C)
• Does the best combination of RETE’s components ad-

vance the state of the art? (Section V-D)
a) Corpus: Our corpus consists of three bug datasets

whose bugs belong to RETE’s defect class (Section III-A),
as shown in Table II. The programs in P28 were sam-
pled uniformly from GitHub on 21/10/21. We exclude two
samples namely wireshark-37122-37123 and gzip-3fe0caeada-
39a362ae9d from MB37 used in Trident [9], since we could
build them along with our ML libraries. MB35 and BG107

BG107 107 bugs from the BugsInPy [10] dataset.
P28 28 Python programs with artificially added holes.
MB35 The ManyBugs [11] subset used in Trident [9].

TABLE II: Evaluation corpus of bugs in RETE’s defect class.
Validator

V Validation against Tests -
T Trident’s patch Specification [9]
A Angelix’s patch Specification [38]
S SOSRepair’s patch Specification [12]

Patch Generator

A Angelix’s Angelic Values [38]
S SOSRepair’s Database of Snippets [12]
P SPR’s Transformation Schemas [14]
C CoCoNut’s Neural Machine Translation [5]
E Trident’s Naïve template enumeration [9]
G GenProg’s Genetic Algorithm [39]
S Plastic Surgery Algorithm [8]

Patch Prioritisation

D DirectFix’s modification minimisation [16]
C CoCoNut’s Neural Machine Translation [5]
E Trident’s expression size minimisation [9]
T Trident’s side effects minimisation [9]
P Prophet’s Maximum Likelihood Estimation [1]
S Plastic Surgery Algorithm [8]

Variable Prioritisation

E Naïve variable enumeration -
H Heuristic discussed in Section V-B -
B CodeBERT [31]
G GraphCodeBERT [40]
D CodeBERT fine-tuned on DU chains Section III-C
C CodeBERT fine-tuned on CDU chains Section III-C
F Random Forest Section V-B

TABLE III: Program Repair Components Used in Evaluation.

include a test suite; the number of tests averages 62.8 for
BG107 and 91.3 for MB35. P28 does not need one as we
used it to train and evaluate RETE’s neural variable ranker.

b) Experimental Setup: We split the test suite into two
parts (20-80), taking care that the smaller part includes at least
one failing test. The smaller part is sent to a subject APR
tool for patch generation. A patch is plausible if it passes the
test suite. We consider a patch correct if it is plausible, and
manual inspection deems it equivalent to the patch written
by the developer. All the patches generated and used in this
evaluation are available in the reproduction package.

For all training and fine-tuning, we used the buggy datasets
with a split of 90-10 for training and testing. All the hyperpa-
rameters are tuned by using K-fold cross-validation with k = 5
and grid search. No layers were frozen, since we had a large
enough dataset and a set of low learning rates during the grid
search. We use Adam optimiser with a weight decay fix [37].

We conducted experiments inside a Docker container on
a CPU of 2.7 GHz machine running on Ubuntu 21.04 with
16GB of memory and Geforce RTX 3070M. We used 4 hours
timeout for each tool.

A. Tool Configurations and Baselines

RETE’s key contribution is in the variable prioritisation,
which is designed to improve patch prioritisation for program

Configuration Tool Reference

VP
P Prophet [1]
T E

T Trident [9]
AA

D Angelix [38]
SS SOSRepair [12]
VC

C CoCoNut [31]
VG GenProg [39]

TABLE IV: Configurations of standard tools.

repair, and is orthogonal to existing patch generation and
prioritisation techniques. To evaluate its impact in isolation, we
dissect existing program repair techniques into interchangeable
parts, and consider their combinations with RETE’s approach.
This analysis differs from the existing high-level classification
of APR tools [41] into heuristic-based, constraint-based, and
learning-based since our goal was to abstract over irrelevant
components of existing tools that would complicate the objec-
tive evaluation of the proposed technique.

We analytically divided repair techniques into three main
parts: patch generation, patch checking and patch prioriti-
sation. Patch generation explores the space of patches by
enumeration [14], meta-heuristics [39], neural machine trans-
lation [5], [42], or SMT-based program synthesis [43]. Patch
checking determines whether a candidate patch meets the cor-
rectness criteria, either via validation against a test suite [39] or
verification, as by solving constraints [9]. Patch prioritisation
ranks patches by their likely correctness, as with syntactic
distance [16] or machine learning [2]. We denote such tech-
niques as X ab , where X is a validator, a is a patch generator,
and b is a patch prioritiser. For RETE, we further split patch
prioritisation into template and variable prioritisation, and
combine them using the technique described in Section III-D.
Such configurations are denoted by the notation X aR(b,c), where
b denotes a template prioritisation technique, and c denotes a
variable prioritisation technique.

The considered components are tabulated in Table III. Based
on this notation, Angelix [38] is AA

D since it uses its own patch
specification and synthesis methods while using DirectFix [16]
patch prioritisation. Angelix uses logical constraints that en-
code program semantics and information extracted from tests,
and validates candidate patches against these constraints; we
refer to this validation method as A. Trident is denoted by T E

T

since it uses different constraints that encode information about
side effects. Finally, Prophet is VP

P since it extends SPR [14]
using an ML-based patch prioritiser. All techniques used as
baselines are tabulated in Section V-A.

All the techniques in Table III, except for CoCoNut (VC
C),

are implemented for C. In order to make a more objective
comparison, we ported Prophet to Python and trained it on
Python programs in the configuration VP

R(P, C). Prophet orders
partially/fully instantiated patches using machine learning and
concretising the partially instantiated patches using SPR’s
condition synthesis algorithm [14]. In SPR’s algorithm, when
multiple possible candidate variables have the same potential
value map, we improve Prophet by supplanting it with RETE’s
variable prioritisation to prioritise variables to satisfy the con-

dition. VP
R(P, C) differs from VP

P in cases where multiple variables
satisfy the conditions, VP

R(P, C) uses its variable prioritiser (i.e.
C) to order these unordered candidate variables. Section VI
discusses why we consider these baselines. We restrict the
defect class to inserting or modifying a single atomic statement
for all tools that we ran in the evaluation. This does not cover
instances such as inserting for/while block, sequence of atomic
statements, method declaration, etc. We used this constraint
to make the patch generation more feasible by reducing the
search space.

B. CDU Chains Contain Strong Signal

To demonstrate the variable usage signal CDU chains con-
tain, we compare token predictors against CodeBert fine-tuned
on CDU chains on our variable prediction task.

We use four variable prioritisation baselines — H, F, B,
and G — introduced in Table III. The first, H, ranks candidate
variables based on their frequency in a program. The second,
F, is the random forest implemented using explicit feature
engineering; outperforming this technique means that our
neural approach is outperforming manual feature engineering.
More information on the features used by the random forest
available in our reproduction package. These two baselines
frame the results; we use the two neural baselines — CodeBert
B and GraphCodeBert G — without fine-tuning to demonstrate
variable signal in CDU chains. We did not fine-tune Graph-
CodeBert with CDU chains because it takes both source code
and that code’s dataflow as input. The difference between the
performance of CodeBert and GraphCodeBert in Table V do
not appear to warrant the engineering required to extract the
dataflow GraphCodeBert needs. We note that CDU chains, by
construction, implicitly contain dataflow information, which a
neural network trained using them may learn and exploit.

Internally, all of these approaches rank candidate variables,
so it is natural to compare them using standard rank measures.
Unfortunately, none works well in our setting. We do not use
mean average precision (MAP) or normalised discounted gain
(NDCG) because we only care about the rank of the first
plausible patch, not their density in a prefix of the complete
ranking. We do not use Mean reciprocal rank (MRR) because
it does not account for search space reduction. We rank the
candidate variables w.r.t. to the number of variables in-scope,
which differs for different samples. MRR does not distinguish
cases such as ranking 6th out of 6 vs. 6th out of 1000 variables
in-scope.

Instead, we introduce a new measure, which we call the
fraction searched measure. This measure returns the length
of the prefix of ranked variables that must be checked over
the total number of candidates, i.e. the fraction of the variable
search space we had to check. For example, assume we have
a search space of 100 variables and, under a particular ranker,
the 16th variable is the first that can fill a hole. In this case, the
ranker reduced the search space to 16%. Formally, let p ∈ L
be a program and p ∈ L be p with some of its variables
replaced with holes. Let r(i, p) be the rank that the variable

TABLE V: The performance of variable prioritisation tech-
niques using the fraction searched measure. The best config-
uration C, CodeBert fine-tuned with CDU chains, is bolded.

Dataset samples H F B G D C

Python 802k 0.476 0.039 0.232 0.204 0.18 0.033
C 652k 0.416 0.032 0.260 0.252 0.07 0.028

- if (tif->tif_rawcc > 0 && tif->tif_rawcc != orig_rawcc
+ if ((tif->tif_rawcc > 0)

&& (tif->tif_flags & TIFF_BEENWRITING) != 0
&& !TIFFFlushData1(tif))

{

Fig. 4: Dev. patch for libtiff-2007-11-02-371336d-s865f7b2.

ranker r assigns to the ground truth variable in p that fills i

in p . The r’s fraction searched is

F (r, p, p) =
1∣∣h(p)
∣∣ ∑

i∈h(p)

r(i, p)∣∣var(i, p)
∣∣

where h(p) counts the holes in p and var(i, p) ⊆ V
denotes the set of all the variables in-scope i in p .

To compute var(, p), we consider only variables whose
type matches the hole’s type. For Python, this does not help
much since everything is an object and many objects seam-
lessly slot into many expressions because of default functions,
like __bool__(). Hence, we restrict rankings to a fixed
vocabulary of variables that varies by bug. We construct this
vocabulary by limiting the accessors (".") to 2 to leverage the
Law of Demeter [44] and avoid variable explosion.

Table V shows that CodeBERT [31], fine-tuned with CDU
Chains, (Column C) outperforms the baselines. In particular,
it outperforms the neural baselines — vanilla CodeBERT (B)
and GraphCodeBert (G) — by an order of magnitude. We
observe that CodeBERT, when fine-tuned on CDU chains,
(Column C), performs better when compared to its counterpart
fine-tuned on DU chains (Column D). Using this, we can
conclude that extending DU chains with conditions helps
improve performance. As expected, we observe that feature
engineering allows random forest (Column F) to outperform
vanilla CodeBert and GraphCodeBert, which are not benefiting
from CDU chains. These results are strong evidence that CDU
chains are valuable source of signal for the variable prediction
task. We find:

CDU chains contain strong signal: CodeBert fine-tuned on
CDU chains (Column C in Table V) outperforms the neu-
ral baselines by an order of magnitude; its performance
edge over random forest (F) means fewer expensive
checks of candidate patches.

Although CDU chains permit CodeBert to outperform our
random forest baseline, its inference is expensive. It takes
0.65s on average to respond to queries, compared to ca. 0.004s
for our random forest.

TABLE VI: On BG107, variable and template prioritisation
perform better. The best configuration is bolded.

Dataset Samples Correct Plausible

VE
R(E, F) VS

R(S, H) VS
R(S, F) VS

R(S, C) VE
R(E, F) VS

R(S, H) VS
R(S, F) VS

R(S, C)

Black 4 0 0 2 2 0 3 3 3
Fastapi 3 0 0 0 0 0 0 0 0
Httpie 3 1 1 2 2 1 2 3 3
Keras 11 0 1 2 2 0 1 7 7
Sanic 1 0 0 0 0 0 0 0 0
Y-DL 3 0 0 1 1 0 0 1 1
Spacy 2 0 0 1 1 0 0 1 1
Tqdm 4 1 1 2 2 1 1 3 3
PySnooper 1 0 1 1 1 0 1 2 2
Tornado 6 0 0 1 2 0 0 2 2
Matplotlib 8 0 2 2 2 0 2 3 3
Luigi 15 1 5 7 7 1 7 7 7
Scrapy 10 0 2 2 2 0 2 2 2
Pandas 36 0 2 4 5 0 2 4 5

Overall 107 3 15 27 29 3 21 38 39

TABLE VII: Average patch ranking for MB35: variable priori-
tisation indeed helps since T S

R(S, C) and T S
R(S, F) outperform other

tools by a large margin. Ranks that cannot be assessed are
marked with “-”.

Bug T E
T T E

R(E, F) T S
R(S, H) T S

R(S, F) T S
R(S, C)

gmp-a1d3d-f17cb 165350 2563 87339 933 843
libtiff-09e82-f2d98 13313 311 14241 552 513
libtiff-764db-2e42d 90471 7655 724 2 7
libtiff-a72cf-0a36d ≈ 1012 - 52428627 15924 15842
libtiff-37133-865f7 ≈ 1018 - 40842 8786 8566
php-70075-5a8c9 87 51 619 890 782
php-e65d3-1d984 90471 36840 110436 5072 5439
php-63673-2adf5 61 7 52 7 3

Average ≈ 2× 1017 - 6585360 4021 3999

C. Effectiveness of RETE’s Prioritisation

To understand the effectiveness of RETE’s patch prioriti-
sation, we compare component combinations for Python and
then C. Below, PSH refers to the plastic surgery hypothesis
and VP to variable prioritiser. For Python, we use BG107 and
these component combinations:
VS

R(S, C) PSH with CDU chain VP
VS

R(S, F) PSH with Random Forest VP
VS

R(S, H) PSH with Heuristic VP
VE

R(E, F) Naïve enumeration with Random Forest VP
Table VI shows that VS

R(S, C) significantly outperforms all the
other combinations. Combining PSH and RETE’s VP does
indeed improve patch synthesis since VS

R(S, C) and VS
R(S, F) both

significantly outperform VS
R(S, H) and VE

R(E, F). VE
R(E, F) could fix only

three bugs, whereas VS
R(S, F) fixes 27 and VS

R(S, H) fixes 15. This is
because most patches are closer to pre-existing code located
somewhere in the buggy program’s code [8]; hence, when
VE

R(E, F) tries to construct a patch in such cases, it faces the harder
task of doing so from the ground up without guidance. VS

R(S, F)

fixes more bugs than VS
R(S, H), since it enumerates patches more

intelligently (Section III-C). VS
R(S, C) fix two more correct bugs

when compared against VS
R(S, F) since CDUs identify relevant

variables better than our random forest baseline.

TABLE VIII: This table compares Prophet and CoCoNut
against RETE’s best variant (VS

R(S, C)) and Prophet enhanced with
RETE (VP

R(P, C)). For correct and plausible patches, RETE out-
performs the other baselines by generating 7 and 13 additional
correct patches against Prophet and CoCoNut, respectively. All
the RETE variants are bolded.

Dataset Samples Correct Plausible

VP
P VP

R(P, C) VC
C VS

R(S, C) VP
P VP

R(P, C) VC
C VS

R(S, C)

Black 4 1 2 1 2 3 3 3 3
FastApi 3 0 0 0 0 0 0 0 0
Httpie 3 1 2 1 2 3 3 2 3
Keras 11 2 2 1 2 4 4 3 7
Sanic 1 0 0 0 0 0 0 0 0
Y-DL 3 0 0 0 1 0 0 0 1
Spacy 2 1 1 0 1 1 1 1 1
Tqdm 4 1 2 1 2 2 2 1 3
PySnooper 1 1 1 1 1 1 1 1 2
Tornado 6 0 0 0 2 0 0 0 2
Matplotlib 8 2 2 2 2 2 2 2 3
Luigi 15 8 8 5 7 8 8 8 7
Scrapy 10 2 2 1 2 2 2 3 2
Pandas 36 3 3 3 5 5 5 6 5

Overall 107 22 25 16 29 31 31 30 39

TABLE IX: The number of patches that require non-local
variables. A variable is considered non-local if it is not directly
used in the method. All RETE configurations are bolded.
Using RETE with variable prioritisation helps generate non-
local variables.

VC
C VP

P VP
R(P, C) VS

R(S, C)

Correct Patches 16 22 25 29
Correct Patches with non-local Variables 0 0 1 5

For C, we used the eight bugs in intersection of MB35
and the subset of RETE ’s defect class on which its best
configuration produces a fix. We use Trident [9] as a val-
idator: C compiles slowly, and Trident’s efficient patch spec-
ification inference obviates many compilations. We com-
pare these five component combinations: T E

T (vanilla Tri-
dent), T E

R(E, F), T S
R(S, H), T S

R(S, F) and T S
R(S, C). Table VII shows the

results. In some cases, the ranks of patches from T S
R(S, F) and

T S
R(S, C) are extremely low compared to those T E

T ’s patches.
This is because T E

T constructs statements from ground up,
hence bugs such as libtiff-a72cf60-0a36d7f and
libtiff-371336d-865f7b2 (Figure 4) cannot be syn-
thesized by T E

T as they require constructing a fresh expression
with 8-13 different variables and operators. In such cases, we
resorted to estimating T E

T ’s rank on them by assuming that
candidate variables were uniformly ordered. Unfortunately,
we could not estimate T E

R(E, F)’s performance the same way,
since it uses F as its VP. On average, the search space is
reduced by a few orders of magnitude on these seven bugs.
The rankings of configurations T S

R(S, H) and T S
R(S, C) affirm that

both RETE’s template and variable prioritisers play a pivotal
role in synthesising patches.

Fig. 5: Patches generated per unit time by RETE (VS
R(S, C)),

Prophet (VP
P) and CoCoNut (VC

C).

Fig. 6: The number of patches generated by T E
T and T S

R(S, F) per
unit time: T S

R(S, F) generates patches faster than T E
T .

On both our Python and C datasets, enhancing other
techniques with RETE’s template and variable prioritisers
improves their performance.

D. RETE’s Performance

We now show that RETE advances the state of the art in
1) time to generate patches and 2) number of correct patches.
We close by showing how it speeds Trident, the state of the
art C APR tool for handling side effects.

Figure 5 shows how many patches RETE (VS
R(S, C)), Prophet

(VP
P) and CoCoNut (VC

C) produce per unit time. All 107
programs from the dataset are uniformly ordered and then
each tool’s execution time to patch each bug, with a timeout of
four hours, is summed, upto the time budget. For each budget,
we repeat this process 10 times with 10 different orders and
average the results. At all budgets, RETE (VS

R(S, C)) outperforms
Prophet and CoCoNut.

Table VIII compares RETE against Prophet [2] and Co-
CoNut [31] in terms of the number of correct and plausible
patches each generates. All RETE variants are bolded in the
table. Prophet (VP

P) generates 22 and CoCoNut (VC
C) 16 correct

patches. RETE’s best configuration (VS
R(S, C)) generates 29 cor-

rect patches. On Python, RETE improves the state of the art
by 31% vs. Prophet and 59% vs. CoCoNut. Prophet, enhanced
with RETE’s variable prioritisation (VP

R(P, C)), fixes three more

TABLE X: Plausible and correct patches for bugs in MB35 (C dataset). RETE integrated with Trident, the column labelled
T S

R(S, F), generates 18 plausible patches out of 35, of which 8 are correct. The next largest total, GenProg, the column labelled
VG, generates 19, of which only two are correct. No other tool configuration generates more correct patches than T S

R(S, F).

Bug kLoC Total Plausible Correct

T S
R(S, F) T E

T AA
D VP

P SS VG T S
R(S, F) T E

T AA
D VP

P SS VG

gmp 145 2 1 1 2 1 0 1 0 0 0 0 0 0
gzip 491 3 3 3 3 2 0 1 1 1 1 1 0 0
libtiff 77 10 8 5 5 5 8 7 4 3 2 1 2 2
php 1,099 19 6 6 6 9 4 9 3 3 3 4 3 0
wireshark 2,814 1 1 1 1 1 1 1 0 0 0 0 1 0

Overall 35 18 15 17 18 13 19 8 6 6 6 6 2

bugs than vanilla Prophet [2]. Interestingly, we observe each of
these two tools exclusively fixes some patches, like patches in
Luigi and Pandas. Although VP

R(P, C) generates more correct
patches than Prophet, they generate the same number of total
patches. This may indicate that Prophet enhanced with Rete’s
variable prioritisation reduces the overall overfitting of the
generated patches.

A variable is non-local if it is not used in the buggy method.
For example, if the variable var is directly used somewhere
in the method, but var.a is not, var is local and var.a
is non-local. Under this definition, most in-scope variables in
Python are non-local. Table IX shows that integrating variable
prioritisation helps synthesise patches that require non-local
variables: VS

R(S, C) fixes five bugs that require non-local variables,
whereas the other tools struggle to synthesise correct patches
that require them.

VS
R(S, C) fixes five bugs that require non-local variables,

whereas other tools struggle to synthesise correct patches
that require non-local variables.

Table X compares the performance of RETE-enhanced Tri-
dent [9] (T S

R(S, F)) against the state of the art. We did not include
T S

R(S, C) for C, despite the fact that it generates better rankings,
because Trident’s validation step is much faster on average
than querying CodeBert (0.28 vs. 0.65 seconds). A faster GPU
than ours would probably alleviate this issue.

Although T S
R(S, F) does not synthesise new patches relative to

the state of the art, it does synthesise more correct patches.
Angelix also generated the two correct patches that T S

R(S, F)

generated beyond those generated by vanilla Trident. This is
due to patch construction. Angelix (AA

D) constructs patches
by minimally modifying the existing expressions using SMT
queries, while RETE’s PSH template constructor tries to find
patches close to a set of existing statements. One such patch is
Figure 4. Here, Angelix and T S

R(S, F) both successfully generate
this patch, since it is easy to modify the existing expres-
sion to reach the patch by simply dropping the expression
tif->tif_rawcc != orig_rawcc. Vanilla Trident, in
contrast, does not since the patch requires an expression
with 11 components, which is infeasible due to combinatoric
explosion. To understand the importance of RETE’s variable
prioritisation more clearly, we ran an experiment by varying

the time limits on these seven bugs that T E
T synthesises to

compare it against T S
R(S, F). Figure 6 shows that T S

R(S, F) synthesises
patches much faster than T E

T .

RETE-enhanced Trident (T S
R(S, F)) repairs bugs faster than

vanilla Trident (T E
T) while fixing two more bugs.

VI. RELATED WORK

Depending on the correctness criterion, we classify program
repair techniques into static and test-driven. Static techniques
rely on static analysis or formal specification, while test-driven
techniques rely on tests. RETE is a new test-driven technique.
We divide program repair algorithms into four conceptual
parts: patch generation, which explores the space of candidate
patches, patch prioritisation which determines which of the
two given patches are more likely to be correct, and patch
checking that checks the input patch against a given specifi-
cation. RETE’s key contribution is in patch prioritisation.

Patch Generation and Checking: Various patch gener-
ation approaches have been proposed: SPR [14] explores
the space of patches by enumeration, GenProg [39] uses
meta-heuristic search, CoCoNut [5] and Cure [42] use neural
machine translation, and techniques like SemFix [43] and
Angelix [38] employs SMT-based program synthesis. Program
repair typically realises patch checking by 1) testing as in
generate-and-validate techniques [39] or by 2) solving con-
straints as in semantic techniques [9], [12], [43]. RETE is a
generic framework that does not impose a fixed patch gener-
ation or checking technique. In this work, we evaluate three
instantiations of RETE: for the plastic surgery hypothesis [8],
for Prophet’s enumerative synthesiser [1], and for Trident’s
constraint-based synthesiser [9]

Patch Prioritisation: Various patch prioritisation tech-
niques have been proposed. DirectFix [16] prioritises smaller
changes. Prophet [2] learns a probabilistic model for ranking
patches. CapGen [45] uses AST node information to esti-
mate the likelihood of concrete patches. GetaFix [46] uses
a hierarchical clustering algorithm that clusters mined fix
patterns into general and specific fix patterns and uses code
context to choose an appropriate fix pattern. These approaches
ignore information about program variables. Several recent
techniques [4], [35], although they focus only on variables
in the local context, do learn variable-related features and

thus can prioritise variables. In contrast to these techniques,
RETE does not require feature engineering and outperforms
our language-agnostic feature engineering approach, as shown
in Section V.

Deep Learning for Program Repair: Deep learning
has been applied for automatically repairing bugs. DeepRe-
pair [47] leverages learned code similarities using recursive
autoencoders [48] to select repair ingredients from code frag-
ments that are similar to the buggy code. Several techniques
leverage deep learning to directly sort and transform code [5],
[49]. CoCoNut [5] is a generate and validate approach that
directly generates multiple patches by using an ensemble of
context-aware neural network architecture. RewardRepair [50]
uses execution data to improve upon patch synthesis. Var-
CLR [51] uses Recoder [52] synthesises a sequence of edits
over directly synthesising the correct program. SequenceR [53]
clusters similar variables by directly passing a stream of
tokens to an encoder. Although deep learning techniques
implicitly learn information about the program namespace,
our experiments show that state-of-the-art deep learning based
tools have difficulty handling the long-range dependencies
problem [6]. RETE addresses this problem by combining deep
learning with program analysis in the form of extraction of
CDU chains to learn a project-independent representation of
the program namespace. We could not use Cure [42] as
a baseline since its reproduction package is not currently
public. Additionally, more recent tools, such as Recoder [52]
and RewardRepair [50] were not compared against in the
evaluation since they were implemented on Java.

Test-overfitting in Program Repair: Test-driven tech-
niques are subject to test-overfitting [41], [54], [55], and
several techniques have been designed to address this chal-
lenge. Apart from the patch prioritisation techniques discussed
above, researchers have proposed using pre-defined databases
of transformations to increase the chance of generating correct
patch [56]–[58], or generating additional tests [59], [60]. RETE
is complementary to these techniques.

Variable Representation: There are various techniques
used to represent variables, each with its own strengths
and weaknesses. Word2vec [61] and its extensions, such as
GloVe [62] and FastText [63], are simpler approaches that
model variable representations by encoding tokens. However,
these techniques may not capture the full complexity and nu-
ance of natural language. To overcome these limitations, more
advanced techniques, such as ELMo [64] and BERT [65],
use pre-trained language models to achieve a deeper under-
standing of language [66], [67]. These approaches have been
successfully applied in a range of code modification tasks,
including suggesting variable names from code contexts [68],
rewriting method and class names [69], and automated pro-
gram repair [4], [35], [47]. They have also been used for type
inference from natural language information [70], [71] and
detecting bugs [72], [73]. These techniques, while possessing
substantial strengths, are nonetheless impeded by sparse data,
particularly when learning about global information outside
the network’s context window. This can result in suboptimal

performance in certain code modification tasks. RETE ame-
liorates this data sparsity issue by using CDU chains, which
contain important information that increases the likelihood of
incorporating global information into the network’s context.
This approach is effective, as demonstrated by the results in
Table IX, which show that RETE generates more fixes related
to global variables when compared with other techniques.

VII. CONCLUSION

Existing program repair approaches neglect information
about the program’s namespace when searching for repairs,
which reduces their effectiveness and increases test overfitting.
This work aims to address this problem by augmenting patch
prioritisation with information about program namespace.
RETE extracts information from CDU chains and uses it for
patch prioritisation. Our evaluation shows that RETE can repair
real bugs in open-source projects faster compared to state-of-
the-art and also finds more correct repairs.

REFERENCES

[1] F. Long and M. Rinard, “An analysis of the search spaces for generate
and validate patch generation systems,” in 2016 IEEE/ACM 38th Inter-
national Conference on Software Engineering (ICSE). IEEE, 2016, pp.
702–713.

[2] ——, “Automatic patch generation by learning correct code,” in Pro-
ceedings of the 43rd Annual ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, 2016, pp. 298–312.

[3] Y. Xiong, J. Wang, R. Yan, J. Zhang, S. Han, G. Huang, and L. Zhang,
“Precise condition synthesis for program repair,” in 2017 IEEE/ACM
39th International Conference on Software Engineering (ICSE). IEEE,
2017, pp. 416–426.

[4] Y. Xiong and B. Wang, “L2s: A framework for synthesizing the most
probable program under a specification,” ACM Transactions on Software
Engineering and Methodology (TOSEM), vol. 31, no. 3, pp. 1–45, 2022.

[5] T. Lutellier, H. V. Pham, L. Pang, Y. Li, M. Wei, and L. Tan, “Coconut:
combining context-aware neural translation models using ensemble for
program repair,” in Proceedings of the 29th ACM SIGSOFT international
symposium on software testing and analysis, 2020, pp. 101–114.

[6] H.-S. Le, A. Allauzen, and F. Yvon, “Measuring the influence of
long range dependencies with neural network language models,” in
Proceedings of the NAACL-HLT 2012 Workshop: Will We Ever Really
Replace the N-gram Model? On the Future of Language Modeling for
HLT, 2012, pp. 1–10.

[7] M. K. Sarker, L. Zhou, A. Eberhart, and P. Hitzler, “Neuro-symbolic
artificial intelligence: Current trends,” 2021. [Online]. Available:
https://arxiv.org/abs/2105.05330

[8] E. T. Barr, Y. Brun, P. Devanbu, M. Harman, and F. Sarro, “The
plastic surgery hypothesis,” in Proceedings of the 22nd ACM SIGSOFT
International Symposium on Foundations of Software Engineering, 2014,
pp. 306–317.

[9] N. Parasaram, E. T. Barr, and S. Mechtaev, “Trident: Controlling side
effects in automated program repair,” IEEE Transactions on Software
Engineering, no. 01, pp. 1–1, 2021.

[10] R. Widyasari, S. Q. Sim, C. Lok, H. Qi, J. Phan, Q. Tay, C. Tan, F. Wee,
J. E. Tan, Y. Yieh et al., “Bugsinpy: a database of existing bugs in
python programs to enable controlled testing and debugging studies,”
in Proceedings of the 28th ACM joint meeting on european software
engineering conference and symposium on the foundations of software
engineering, 2020, pp. 1556–1560.

[11] C. Le Goues, N. Holtschulte, E. K. Smith, Y. Brun, P. Devanbu,
S. Forrest, and W. Weimer, “The manybugs and introclass benchmarks
for automated repair of c programs,” IEEE Transactions on Software
Engineering, vol. 41, no. 12, pp. 1236–1256, 2015.

[12] A. Afzal, M. Motwani, K. Stolee, Y. Brun, and C. Le Goues, “Sosre-
pair: Expressive semantic search for real-world program repair,” IEEE
Transactions on Software Engineering, 2019.

[13] Łukasz Langa and collaborators, “Black, a python code formatter,” https:
//github.com/psf/black, 2022, accessed: 2022-05-05.

https://arxiv.org/abs/2105.05330
https://github.com/psf/black
https://github.com/psf/black

[14] F. Long and M. Rinard, “Staged program repair with condition synthe-
sis,” in Proceedings of the 2015 10th Joint Meeting on Foundations of
Software Engineering, 2015, pp. 166–178.

[15] M. Monperrus, “A critical review of" automatic patch generation learned
from human-written patches": Essay on the problem statement and the
evaluation of automatic software repair,” in Proceedings of the 36th
International Conference on Software Engineering, 2014, pp. 234–242.

[16] S. Mechtaev, J. Yi, and A. Roychoudhury, “Directfix: Looking for
simple program repairs,” in 2015 IEEE/ACM 37th IEEE International
Conference on Software Engineering, vol. 1. IEEE, 2015, pp. 448–458.

[17] M. Weiser, “Program slicing,” IEEE Transactions on software engineer-
ing, no. 4, pp. 352–357, 1984.

[18] K. B. Gallagher, “Using program slicing in software maintenance,” Ph.D.
dissertation, University of Maryland, Baltimore County, 1990.

[19] T. Gyimóthy, A. Beszédes, and I. Forgács, “An efficient relevant slic-
ing method for debugging,” in Software Engineering—ESEC/FSE’99.
Springer, 1999, pp. 303–321.

[20] S. Islam, J. Krinke, D. Binkley, and M. Harman, “Coherent clusters in
source code,” Journal of systems and software, vol. 88, pp. 1–24, 2014.

[21] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
Ł. Kaiser, and I. Polosukhin, “Attention is all you need,” Advances in
neural information processing systems, vol. 30, 2017.

[22] E. Biswas, M. E. Karabulut, L. Pollock, and K. Vijay-Shanker, “Achiev-
ing reliable sentiment analysis in the software engineering domain using
bert,” in 2020 IEEE International Conference on Software Maintenance
and Evolution (ICSME). IEEE, 2020, pp. 162–173.

[23] T. Zhang, B. Xu, F. Thung, S. A. Haryono, D. Lo, and L. Jiang,
“Sentiment analysis for software engineering: How far can pre-trained
transformer models go?” in 2020 IEEE International Conference on
Software Maintenance and Evolution (ICSME). IEEE, 2020, pp. 70–
80.

[24] S. Lu, D. Guo, S. Ren, J. Huang, A. Svyatkovskiy, A. Blanco,
C. Clement, D. Drain, D. Jiang, D. Tang et al., “Codexglue: A machine
learning benchmark dataset for code understanding and generation,”
arXiv preprint arXiv:2102.04664, 2021.

[25] R. Abreu, P. Zoeteweij, and A. J. Van Gemund, “On the accuracy of
spectrum-based fault localization,” in Testing: Academic and industrial
conference practice and research techniques-MUTATION (TAICPART-
MUTATION 2007). IEEE, 2007, pp. 89–98.

[26] D. Zou, J. Liang, Y. Xiong, M. D. Ernst, and L. Zhang, “An empirical
study of fault localization families and their combinations,” IEEE
Transactions on Software Engineering, vol. 47, no. 2, pp. 332–347, 2019.

[27] K. Liu, A. Koyuncu, T. F. Bissyandé, D. Kim, J. Klein, and Y. Le Traon,
“You cannot fix what you cannot find! an investigation of fault localiza-
tion bias in benchmarking automated program repair systems,” in 2019
12th IEEE conference on software testing, validation and verification
(ICST). IEEE, 2019, pp. 102–113.

[28] K. Liu, S. Wang, A. Koyuncu, K. Kim, T. F. Bissyandé, D. Kim, P. Wu,
J. Klein, X. Mao, and Y. L. Traon, “On the efficiency of test suite based
program repair: A systematic assessment of 16 automated repair systems
for java programs,” in Proceedings of the ACM/IEEE 42nd International
Conference on Software Engineering, 2020, pp. 615–627.

[29] J. R. Firth, “A synopsis of linguistic theory, 1930-1955,” Studies in
linguistic analysis, 1957.

[30] E. W. Dijkstra et al., “A note on two problems in connexion with graphs,”
Numerische mathematik, vol. 1, no. 1, pp. 269–271, 1959.

[31] Z. Feng, D. Guo, D. Tang, N. Duan, X. Feng, M. Gong, L. Shou,
B. Qin, T. Liu, D. Jiang, and M. Zhou, “CodeBERT: A pre-trained
model for programming and natural languages,” in Findings of the
Association for Computational Linguistics: EMNLP 2020. Online:
Association for Computational Linguistics, Nov. 2020, pp. 1536–1547.
[Online]. Available: https://aclanthology.org/2020.findings-emnlp.139

[32] T. Wolf, L. Debut, V. Sanh, J. Chaumond, C. Delangue, A. Moi,
P. Cistac, T. Rault, R. Louf, M. Funtowicz, J. Davison, S. Shleifer,
P. von Platen, C. Ma, Y. Jernite, J. Plu, C. Xu, T. L. Scao, S. Gugger,
M. Drame, Q. Lhoest, and A. M. Rush, “Transformers: State-of-
the-art natural language processing,” in Proceedings of the 2020
Conference on Empirical Methods in Natural Language Processing:
System Demonstrations. Online: Association for Computational
Linguistics, Oct. 2020, pp. 38–45. [Online]. Available: https:
//www.aclweb.org/anthology/2020.emnlp-demos.6

[33] R. M. Karp, “Reducibility among combinatorial problems,” in Complex-
ity of computer computations. Springer, 1972, pp. 85–103.

[34] D. S. Hochbaum, “Approximating covering and packing problems:
set cover, vertex cover, independent set, and related problems,” in
Approximation algorithms for NP-hard problems, 1996, pp. 94–143.

[35] H. Ye, J. Gu, M. Martinez, T. Durieux, and M. Monperrus, “Automated
classification of overfitting patches with statically extracted code fea-
tures,” IEEE Transactions on Software Engineering, 2021.

[36] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg et al.,
“Scikit-learn: Machine learning in python,” the Journal of machine
Learning research, vol. 12, pp. 2825–2830, 2011.

[37] I. Loshchilov and F. Hutter, “Decoupled weight decay regularization,”
arXiv preprint arXiv:1711.05101, 2017.

[38] S. Mechtaev, J. Yi, and A. Roychoudhury, “Angelix: Scalable multiline
program patch synthesis via symbolic analysis,” in Proceedings of the
38th international conference on software engineering, 2016, pp. 691–
701.

[39] C. Le Goues, M. Dewey-Vogt, S. Forrest, and W. Weimer, “A systematic
study of automated program repair: Fixing 55 out of 105 bugs for 8
each,” in 2012 34th International Conference on Software Engineering
(ICSE). IEEE, 2012, pp. 3–13.

[40] D. Guo, S. Ren, S. Lu, Z. Feng, D. Tang, S. Liu, L. Zhou, N. Duan,
A. Svyatkovskiy, S. Fu et al., “Graphcodebert: Pre-training code repre-
sentations with data flow,” arXiv preprint arXiv:2009.08366, 2020.

[41] C. L. Goues, M. Pradel, and A. Roychoudhury, “Automated program
repair,” Communications of the ACM, vol. 62, no. 12, pp. 56–65, 2019.

[42] N. Jiang, T. Lutellier, and L. Tan, “Cure: Code-aware neural machine
translation for automatic program repair,” in 2021 IEEE/ACM 43rd
International Conference on Software Engineering (ICSE). IEEE, 2021,
pp. 1161–1173.

[43] H. D. T. Nguyen, D. Qi, A. Roychoudhury, and S. Chandra, “Semfix:
Program repair via semantic analysis,” in 2013 35th International
Conference on Software Engineering (ICSE). IEEE, 2013, pp. 772–
781.

[44] K. Lieberherr and I. Holland, “Assuring good style for object-oriented
programs,” IEEE Software, vol. 6, no. 5, pp. 38–48, 1989.

[45] M. Wen, J. Chen, R. Wu, D. Hao, and S.-C. Cheung, “Context-
aware patch generation for better automated program repair,” in 2018
IEEE/ACM 40th International Conference on Software Engineering
(ICSE). IEEE, 2018, pp. 1–11.

[46] J. Bader, A. Scott, M. Pradel, and S. Chandra, “Getafix: Learning
to fix bugs automatically,” Proceedings of the ACM on Programming
Languages, vol. 3, no. OOPSLA, pp. 1–27, 2019.

[47] M. White, M. Tufano, M. Martinez, M. Monperrus, and D. Poshyvanyk,
“Sorting and transforming program repair ingredients via deep learning
code similarities,” in 2019 IEEE 26th International Conference on
Software Analysis, Evolution and Reengineering (SANER). IEEE, 2019,
pp. 479–490.

[48] M. White, M. Tufano, C. Vendome, and D. Poshyvanyk, “Deep learning
code fragments for code clone detection,” in 2016 31st IEEE/ACM
International Conference on Automated Software Engineering (ASE).
IEEE, 2016, pp. 87–98.

[49] W. U. Ahmad, S. Chakraborty, B. Ray, and K.-W. Chang, “Unified
pre-training for program understanding and generation,” arXiv preprint
arXiv:2103.06333, 2021.

[50] H. Ye, M. Martinez, and M. Monperrus, “Neural program repair with
execution-based backpropagation,” in 2022 IEEE/ACM 44th Interna-
tional Conference on Software Engineering (ICSE). IEEE, 2022, pp.
1506–1518.

[51] Q. Chen, J. Lacomis, E. J. Schwartz, G. Neubig, B. Vasilescu, and
C. Le Goues, “Varclr: Variable semantic representation pre-training via
contrastive learning,” in 44th IEEE/ACM 44th International Conference
on Software Engineering. ACM, 2022, pp. 2327–2339. [Online].
Available: https://doi.org/10.1145/3510003.3510162

[52] Q. Zhu, Z. Sun, Y.-a. Xiao, W. Zhang, K. Yuan, Y. Xiong, and L. Zhang,
“A syntax-guided edit decoder for neural program repair,” in Proceedings
of the 29th ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engineering,
2021, pp. 341–353.

[53] Z. Chen, S. J. Kommrusch, M. Tufano, L.-N. Pouchet, D. Poshyvanyk,
and M. Monperrus, “Sequencer: Sequence-to-sequence learning for end-
to-end program repair,” IEEE Transactions on Software Engineering,
2019.

[54] E. K. Smith, E. T. Barr, C. Le Goues, and Y. Brun, “Is the cure
worse than the disease? overfitting in automated program repair,” in

https://aclanthology.org/2020.findings-emnlp.139
https://www.aclweb.org/anthology/2020.emnlp-demos.6
https://www.aclweb.org/anthology/2020.emnlp-demos.6
https://doi.org/10.1145/3510003.3510162

Proceedings of the 2015 10th Joint Meeting on Foundations of Software
Engineering, 2015, pp. 532–543.

[55] X. B. D. Le, F. Thung, D. Lo, and C. Le Goues, “Overfitting in
semantics-based automated program repair,” Empirical Software Engi-
neering, vol. 23, no. 5, pp. 3007–3033, 2018.

[56] D. Kim, J. Nam, J. Song, and S. Kim, “Automatic patch generation
learned from human-written patches,” in 2013 35th International Con-
ference on Software Engineering (ICSE). IEEE, 2013, pp. 802–811.

[57] J. Kim and S. Kim, “Automatic patch generation with context-based
change application,” Empirical Software Engineering, vol. 24, no. 6,
pp. 4071–4106, 2019.

[58] A. Koyuncu, K. Liu, T. F. Bissyandé, D. Kim, J. Klein, M. Monperrus,
and Y. Le Traon, “Fixminer: Mining relevant fix patterns for automated
program repair,” Empirical Software Engineering, pp. 1–45, 2020.

[59] J. Yang, A. Zhikhartsev, Y. Liu, and L. Tan, “Better test cases for
better automated program repair,” in Proceedings of the 2017 11th Joint
Meeting on Foundations of Software Engineering, 2017, pp. 831–841.

[60] X. Gao, S. Mechtaev, and A. Roychoudhury, “Crash-avoiding program
repair,” in Proceedings of the 28th ACM SIGSOFT International Sym-
posium on Software Testing and Analysis, 2019, pp. 8–18.

[61] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean,
“Distributed representations of words and phrases and their composi-
tionality,” Advances in neural information processing systems, vol. 26,
2013.

[62] J. Pennington, R. Socher, and C. D. Manning, “Glove: Global vectors
for word representation,” in Proceedings of the 2014 conference on
empirical methods in natural language processing (EMNLP), 2014, pp.
1532–1543.

[63] P. Bojanowski, E. Grave, A. Joulin, and T. Mikolov, “Enriching word
vectors with subword information,” Transactions of the association for
computational linguistics, vol. 5, pp. 135–146, 2017.

[64] M. Peters, M. Neumann, M. Iyyer, M. Gardner, C. Clark, K. Lee, and
L. Zettlemoyer, “Deep contextualized word representations. arxiv 2018,”
arXiv preprint arXiv:1802.05365, vol. 12, 2018.

[65] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-training
of deep bidirectional transformers for language understanding,” arXiv
preprint arXiv:1810.04805, 2018.

[66] M. Chen, J. Tworek, H. Jun, Q. Yuan, H. P. d. O. Pinto, J. Kaplan,
H. Edwards, Y. Burda, N. Joseph, G. Brockman et al., “Evaluating large
language models trained on code,” arXiv preprint arXiv:2107.03374,
2021.

[67] Q. Chen, J. Lacomis, E. J. Schwartz, G. Neubig, B. Vasilescu, and C. L.
Goues, “Varclr: Variable semantic representation pre-training via con-
trastive learning,” in Proceedings of the 44th International Conference
on Software Engineering, 2022, pp. 2327–2339.

[68] R. Bavishi, M. Pradel, and K. Sen, “Context2name: A deep learning-
based approach to infer natural variable names from usage contexts,”
arXiv preprint arXiv:1809.05193, 2018.

[69] U. Alon, M. Zilberstein, O. Levy, and E. Yahav, “code2vec: Learning
distributed representations of code,” Proceedings of the ACM on Pro-
gramming Languages, vol. 3, no. POPL, pp. 1–29, 2019.

[70] R. S. Malik, J. Patra, and M. Pradel, “Nl2type: inferring javascript
function types from natural language information,” in 2019 IEEE/ACM
41st International Conference on Software Engineering (ICSE). IEEE,
2019, pp. 304–315.

[71] Z. Xu, X. Zhang, L. Chen, K. Pei, and B. Xu, “Python probabilistic
type inference with natural language support,” in Proceedings of the
2016 24th ACM SIGSOFT international symposium on foundations of
software engineering, 2016, pp. 607–618.

[72] M. Pradel and T. R. Gross, “Detecting anomalies in the order of equally-
typed method arguments,” in Proceedings of the 2011 International
Symposium on Software Testing and Analysis, 2011, pp. 232–242.

[73] M. Pradel and K. Sen, “Deepbugs: A learning approach to name-based
bug detection,” Proceedings of the ACM on Programming Languages,
vol. 2, no. OOPSLA, pp. 1–25, 2018.

	Introduction
	Overview
	Rete's Template Generation
	Rete's Variable Prioritisation

	Rete
	The Patch Ordering Problem
	Prioritising Templates via Distance
	Learning Namespace Representations
	Jointly Prioritising Patches

	Rete's Implementation
	Lazily Prioritising Templates
	Variable Prioritisation with CodeBert

	Evaluation
	Tool Configurations and Baselines
	CDU Chains Contain Strong Signal
	Effectiveness of Rete's Prioritisation
	Rete's Performance

	Related Work
	Conclusion
	References

