Abstract Interpretation

Sergey Mechtaev mechtaev@pku.edu.cn

Peking University

Example

Consider programs manipulating points in two-dimensional space:

```
init([0,1] × [0,1]);
translation(1,0);
iter{
    {
        translation(1,0)
     }or{
        rotation(0,0,90°)
    }
}
```

Possible Executions

State Reachability Problem

Can program reach a state where x < 0?

Correct and Incorrect Executions

init([0,1] × [0,1]);
iter{
 {
 translation(1,0);
 }or{
 translation(0.5,0.5);
 }
}

(a) An incorrect execution

(b) Correct executions

Abstraction and Concretisation

Abstraction is a set of logical properties of program states, which are called **abstract elements**. A set of abstract elements is **abstract domain**.

Covent an abstract element a, the set of program states that satisfy it is called concretisation, denoted as $\gamma(a)$

Sign Abstraction

Abstract elements: $[x \ge 0]$, $[x \le 0, y \ge 0]$, etc

Interval Abstraction

- a_0 corresponds to $1 \le x \le 3$ and $1 \le y \le 2$
- a_1 corresponds to $1 \le x \le 2$
- a_2 corresponds to $1 \le x$ and $1 \le y$

Best Abstraction

Convex Polyhedra Abstraction

Defined as conjunction of linear inequalities

 $x - y \ge -0.5$ $x \le 2.5$ $x + 4y \ge 4.5$

Comparing Abstract Domains

Abstraction of Post-conditions

Abstraction of Post-conditions

• rotation(u,v, θ)

(c) Convex polyhedra

Non-Deterministic Choice

• translation(2,1) or translation(-2,-1)

Iterations

$$p ::= \begin{cases} \texttt{iter} \{ \\ b \\ \} \end{cases}$$

Example with loop

 $\label{eq:init} \begin{array}{l} \texttt{init}(\{(\texttt{x},\texttt{y}) \mid 0 \leq \texttt{y} \leq 2\texttt{x} \textit{ and } \texttt{x} \leq 0.5\}); \\ \texttt{iter} \{ \end{array}$

```
translation(1, 0.5)
```

}

(a) Concrete semantics

Infinite Iterations

Widening To Make Analysis Converge

Iteration 2 (reach fixed point)

Iteration 1