
04834580 Software Engineering (Honor Track) 2024-25

Code Smells & Anti-Patterns

Sergey Mechtaev
mechtaev@pku.edu.cn

School of Computer Science, Peking University

mailto:mechtaev@pku.edu.cn

Design Stamina Hypothesis [1]

You can save short-term time by neglecting design, but this accumulates
technical debt which will slow your productivity later. — Martin Fowler [1]

04834580 Software Engineering (Honor Track) 2024-25 / Code Smells & Anti-Patterns 2 / 39

Technical Debt

Definition (Technical Debt)

The implied cost of additional work in the future resulting from choosing an
expedient solution over a more robust one.

The danger occurs when the debt is not repaid. Every minute spent on not-
quite-right code counts as interest on that debt. — Ward Cunningham [2]

04834580 Software Engineering (Honor Track) 2024-25 / Code Smells & Anti-Patterns 3 / 39

Code Smells

Definition (Code Smell [3])
Suboptimal design decisions applied by developers that can negatively affect the
overall maintainability of a software system.

Code smells are one of the symptoms of the technical debt.

04834580 Software Engineering (Honor Track) 2024-25 / Code Smells & Anti-Patterns 4 / 39

Code Smells

Common code smells discussed by Martin Fowler [4]:

▶ Duplicated Code

▶ Long Methods

▶ Large Classes

▶ Long Parameter Lists

▶ Divergent Change

▶ Shotgun Surgery

▶ Feature Envy

▶ Data Clumps

▶ Primitive Obsession

▶ Switch Statements

▶ Parallel Inheritance Hierarchies

▶ Lazy Class

▶ Speculative Generality

▶ Temporary Field

▶ Message Chains

▶ Middle Man

▶ Insider Trading

▶ Alternative Classes with Different
Interfaces

▶ Incomplete Library Class

▶ Data Class

▶ Refused Bequest

▶ Comments

04834580 Software Engineering (Honor Track) 2024-25 / Code Smells & Anti-Patterns 5 / 39

Code Smells

Code smells proposed by Wake [5]:

▶ Type Embedded in Name

▶ Uncommunicative Names

▶ Inconsistent Names

▶ Dead Code

▶ Null Check

▶ Complicated Boolean Expression

▶ Special Case

▶ Magic Numbers

04834580 Software Engineering (Honor Track) 2024-25 / Code Smells & Anti-Patterns 6 / 39

Code Smells

Code smells proposed by Kerievsky [6]:

▶ Conditional Complexity

▶ Indecent Exposure

▶ Solution Sprawl

▶ Combinatorial Explosion

▶ Oddball Solution

04834580 Software Engineering (Honor Track) 2024-25 / Code Smells & Anti-Patterns 7 / 39

Anti-Patterns

Development anti-patterns by Brown et al. [7]:

▶ The Blob

▶ Continuous Obsolescence

▶ Lava Flow

▶ Ambiguous Viewpoint

▶ Functional Decomposition

▶ Poltergeists

▶ Boat Anchor

▶ Golden Hammer

▶ Dead End

▶ Spaghetti Code

▶ Input Kludge

▶ Walking through a Minefield

▶ Cut-and-Paste Programming

▶ Mushroom Management

04834580 Software Engineering (Honor Track) 2024-25 / Code Smells & Anti-Patterns 8 / 39

Anti-Patterns

Architectural anti-patterns by Brown et al. [7]:

▶ Autogenerated Stovepipe

▶ Stovepipe Enterprise

▶ Jumble

▶ Stovepipe System

▶ Cover Your Assets

▶ Vendor Lock-In

▶ Wolf Ticket

▶ Architecture by Implication

▶ Warm Bodies

▶ Design by Committee

▶ Swiss Army Knife

▶ Reinvent the Wheel

▶ The Grand Old Duke of York

04834580 Software Engineering (Honor Track) 2024-25 / Code Smells & Anti-Patterns 9 / 39

Duplicated Code

Definition

The same code structure repeats in more than one place.

int sumA = 0;

for (int i = 0; i < 3; i++)

sumA += arrayA[i];

int avgA = sumA / 3;

int sumB = 0;

for (int i = 0; i < 4; i++)

sumB += arrayB[i];

int avgB = sumB / 4;

04834580 Software Engineering (Honor Track) 2024-25 / Code Smells & Anti-Patterns 10 / 39

Duplicated Code

Eliminating duplicate code via refactoring:

int calcAvg(int[] a, int n) {

int sum = 0;

for (int i = 0; i < n; i++)

sum += a[i];

return sum / n;

}

int avgA = calcAvg(arrayA, 3);

int avgB = calcAvg(arrayB, 4);

04834580 Software Engineering (Honor Track) 2024-25 / Code Smells & Anti-Patterns 11 / 39

Long Methods/Large Classes

Definition

Methods or classes, whose excessive length make them hard to understand.

Such methods/classes often violate separation of concerns. Need to be
decomposed into smaller classes via refactoring.

04834580 Software Engineering (Honor Track) 2024-25 / Code Smells & Anti-Patterns 12 / 39

Long Parameter Lists

Definition

Long parameter lists that are hard to understand, because they become inconsistent
and difficult to use, and that are frequently changing as you need more data.

drawLine(int xBegin, int yBegin, int xEnd, int yEnd,

int red, int green, int blue, int alpha);

04834580 Software Engineering (Honor Track) 2024-25 / Code Smells & Anti-Patterns 13 / 39

Long Parameter Lists

Addressing long parameter list via refactoring:

Point begin = new Point(xBegin, yBegin);

Point end = new Point(xEnd, yEnd);

Color color = new Color(red, green, blue, alpha);

drawLine(begin, end, color);

04834580 Software Engineering (Honor Track) 2024-25 / Code Smells & Anti-Patterns 14 / 39

Divergent Change

Definition

Divergent change occurs when one class is commonly changed in different ways for
different reasons (violation of single responsibility principle).

For example, the following holds inside the same class:

▶ “I will have to change these three methods every time I get a new database”;

▶ “I have to change these four methods every time there is a new financial
instrument”.

You likely have a situation in which two objects are better than one.

04834580 Software Engineering (Honor Track) 2024-25 / Code Smells & Anti-Patterns 15 / 39

Shotgun Surgery

Definition

When every time you make a kind of change, you have to make a lot of little
changes to a lot of different classes.

04834580 Software Engineering (Honor Track) 2024-25 / Code Smells & Anti-Patterns 16 / 39

Feature Envy

Definition

A method that seems more interested in a class other than the one it actually is in.

class ShoppingItem:
name: str
price: float
tax: float

class Order:
...
def get_bill_total(self, items: list[ShoppingItem]) -> float:

return sum([item.price * item.tax for item in items])

def get_receipt_string(self, items: list[ShoppingItem]) -> list[str]:
return [f"{item.name}: {item.price * item.tax}$" for item in items]

def create_receipt(self, items: list[ShoppingItem]) -> float:
bill = self.get_bill_total(items)
receipt = self.get_receipt_string(items).join('\n')
return f"{receipt}\nBill {bill}"

04834580 Software Engineering (Honor Track) 2024-25 / Code Smells & Anti-Patterns 17 / 39

Feature Envy (Solution)

class ShoppingItem:
name: str
price: float
tax: float

@property
def taxed_price(self) -> float:

return self.price * self.tax

def get_receipt_string(self) -> str:
return f"{self.name}: {self.price * self.tax}$"

class Order:
...
def get_bill_total(items: list[ShoppingItem]) -> float:

return sum([item.taxed_price for item in items])

def get_receipt_string(items: list[ShoppingItem]) -> list[str]:
return [item.get_receipt_string() for item in items]

def create_receipt(items: list[ShoppingItem]) -> float:
bill = self.get_bill_total(items)
receipt = self.get_receipt_string(items).join('\n')
return f"{receipt}\nBill: {bill}$"

04834580 Software Engineering (Honor Track) 2024-25 / Code Smells & Anti-Patterns 18 / 39

Data Clumps

Definition

Data items that tend to be used in groups together.

def colorize(red: int, green: int, blue: int):

...

04834580 Software Engineering (Honor Track) 2024-25 / Code Smells & Anti-Patterns 19 / 39

Data Clumps

Addressed by introducing a data structure:

class RGB:

red: int

green: int

blue: int

def colorize(rgb: RGB):

...

04834580 Software Engineering (Honor Track) 2024-25 / Code Smells & Anti-Patterns 20 / 39

Primitive Obsession

Definition

Whenever a variable that is just a simple string, or an int simulates being a more
abstract concept, which could be an object.

birthday_date: str = "1998-03-04"

name_day_date: str = "2021-03-20"

04834580 Software Engineering (Honor Track) 2024-25 / Code Smells & Anti-Patterns 21 / 39

Primitive Obsession

Addressed by introducing appropriate data structures:

class Date:

year: int

month: int

day: int

def __str__(self):

return f"{self.year}-{self.month}-{self.day}"

birthday: Date = Date(1998, 03, 04)

name_day: Date = Date(2021, 03, 20)

04834580 Software Engineering (Honor Track) 2024-25 / Code Smells & Anti-Patterns 22 / 39

Switch Statements

Definition

Use of explicit switch statements instead of dynamic dispatch in object-oriented
languages.

def calculate_area(shape):

if shape['type'] == 'circle':

return math.pi * (shape['radius'] ** 2)

elif shape['type'] == 'rectangle':

return shape['width'] * shape['height']

else:

raise ValueError("Unknown shape type")

circle = {'type': 'circle', 'radius': 5}

rectangle = {'type': 'rectangle', 'width': 4, 'height': 6}

04834580 Software Engineering (Honor Track) 2024-25 / Code Smells & Anti-Patterns 23 / 39

Switch Statements

Addressed by applying dynamic dispatch:

class Circle(Shape):

def __init__(self, radius):

self.radius = radius

def area(self):

return math.pi * (self.radius ** 2)

class Rectangle(Shape):

def __init__(self, width, height):

self.width = width

self.height = height

def area(self):

return self.width * self.height

class Triangle(Shape):

def __init__(self, base, height):

self.base = base

self.height = height

def area(self):

return 0.5 * self.base * self.height

04834580 Software Engineering (Honor Track) 2024-25 / Code Smells & Anti-Patterns 24 / 39

Parallel Inheritance Hierarchies

Definition

Every time you make a subclass of one class, you also have to make a subclass of
another (a special case of shotgun surgery).

class User(ABC):
...
functions: Functions

class Functions(ABC):
...

class BasicUser(User):
...

class BasicFunctions(Functions):
...

class PremiumUser(User):
...

class PremiumFunctions(Functions):
...

04834580 Software Engineering (Honor Track) 2024-25 / Code Smells & Anti-Patterns 25 / 39

Lazy Class

Definition

Each class you create costs money to maintain and understand. A class that isn’t
doing enough to pay for itself should be eliminated.

class Strength:

value: int

class Person:

health: int

intelligence: int

strength: Strength

04834580 Software Engineering (Honor Track) 2024-25 / Code Smells & Anti-Patterns 26 / 39

Speculative Generality

Definition

Features added in preparation for the future, guessing they will be useful, but that
time never came.

class Animal:
health: int

class Human(Animal):
name: str
attack: int
defense: int

class Swordsman(Human):
...

class Archer(Human):
...

class Pikeman(Human):
...

04834580 Software Engineering (Honor Track) 2024-25 / Code Smells & Anti-Patterns 27 / 39

Temporary Field

Definition

Temporary field is a variable created where it is not needed.

@dataclass
class MyDateTime:

def __init__(self, year, month, day):
self.year = year
self.month = month
self.day = day
self.full_date = f"{year}, {month}, {day}"

def foo(self):
...

def goo(self):
...

def hoo(self):
...

def __str__(self):
return self.full_date

04834580 Software Engineering (Honor Track) 2024-25 / Code Smells & Anti-Patterns 28 / 39

Message Chains

Definition

Long sequences of methods calls indicate hidden dependencies by being
intermediaries.

class Minion:

_location: Location

def action(self):

...

if self._location.field.is_frontline():

...

class Location:

field: Field

class Field:

def is_frontline(self)

...

04834580 Software Engineering (Honor Track) 2024-25 / Code Smells & Anti-Patterns 29 / 39

Middle Man

Definition

The class that only performs delegation work to other classes.

class Minion:
_location: Location

def action(self):
...
if self.is_frontline():

...

def is_frontline(self)
return self._location.is_frontline()

class Location:
_field: Field

def is_frontline(self)
return self._field.is_frontline()

class Field:
def is_frontline(self)

...

04834580 Software Engineering (Honor Track) 2024-25 / Code Smells & Anti-Patterns 30 / 39

Insider Trading

Definition

“Classes spend too much time delving in each other’s private parts.”

@dataclass
class Commit:

name: str

def push(self, repo: Repo):
repo.push(self.name)

def commit(self, url: str):
...

@dataclass
class Repo:

url: str

def push(self, name: str):
...

def commit(self, commit: Commit):
commit.commit(self.url)

04834580 Software Engineering (Honor Track) 2024-25 / Code Smells & Anti-Patterns 31 / 39

Alternative Classes with Different Interfaces

Definition

If two classes have the same functionality but different implementations.

class Snowman(Humanoid):

def hug_snowman():

...

class Zombie(Humanoid):

def hug_zombie():

...

04834580 Software Engineering (Honor Track) 2024-25 / Code Smells & Anti-Patterns 32 / 39

Incomplete Library Class

Definition

A library API arbitrarily omits some useful capabilities.

04834580 Software Engineering (Honor Track) 2024-25 / Code Smells & Anti-Patterns 33 / 39

Null Check

Definition

Use of NULL causes a multitude of undefined or null checks everywhere: in guard
checks, in condition blocks, and verifications clauses.

04834580 Software Engineering (Honor Track) 2024-25 / Code Smells & Anti-Patterns 34 / 39

Complicated Boolean Expression

Definition

Use of hard-to-understand boolean expressions.

def cook(ready: bool, bag: list):

if (ready):

if (['raspberry', 'apple', 'tomato'] in bag and

['carrot', 'spinach', 'garlic'] not in bag):

...

04834580 Software Engineering (Honor Track) 2024-25 / Code Smells & Anti-Patterns 35 / 39

Complicated Boolean Expression

Addressed via refactoring:

"ready" extracted out of the function scope

def cook(bag: list):

def hasFruit(container: list) -> bool:

return ['raspberry', 'apple', 'tomato'] in container

def hasVeggie(container: list) -> bool:

return ['carrot', 'spinach', 'garlic'] in container

if not hasFruit(bag):

return

if hasVeggie(bag):

return

...

04834580 Software Engineering (Honor Track) 2024-25 / Code Smells & Anti-Patterns 36 / 39

Magic Numbers

Definition

Using numbers that do not convey clear meaning.

def calculateDamage(...) -> int:

total_damage = ...

return math.max(100, damage)

Better:

def calculateDamage(...) -> int:

total_damage = ...

MAX_DAMAGE_CAP: int = 100

return math.max(MAX_DAMAGE_CAP, total_damage)

04834580 Software Engineering (Honor Track) 2024-25 / Code Smells & Anti-Patterns 37 / 39

References I

[1] Martin Fowler.
Design stamina hypothesis.
https://martinfowler.com/bliki/DesignStaminaHypothesis.html, 2007.

[2] Ward Cunningham.
The wycash portfolio management system.
https://c2.com/doc/oopsla92.html, 1992.

[3] Dario Di Nucci, Fabio Palomba, Damian A Tamburri, Alexander Serebrenik, and
Andrea De Lucia.
Detecting code smells using machine learning techniques: Are we there yet?
In 2018 ieee 25th international conference on software analysis, evolution and
reengineering (saner), pages 612–621. IEEE, 2018.

[4] Martin Fowler.
Refactoring: improving the design of existing code.
Addison-Wesley Professional, 2018.

04834580 Software Engineering (Honor Track) 2024-25 / Code Smells & Anti-Patterns 38 / 39

https://martinfowler.com/bliki/DesignStaminaHypothesis.html
https://c2.com/doc/oopsla92.html

References II

[5] William C Wake.
Refactoring workbook.
Addison-Wesley Professional, 2004.

[6] Joshua Kerievsky.
Refactoring to patterns.
Pearson Deutschland GmbH, 2005.

[7] William H Brown, Raphael C Malveau, Hays W” Skip” McCormick, and
Thomas J Mowbray.
AntiPatterns: refactoring software, architectures, and projects in crisis.
John Wiley & Sons, Inc., 1998.

04834580 Software Engineering (Honor Track) 2024-25 / Code Smells & Anti-Patterns 39 / 39

