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Naming Things

There are only two hard things in Computer Science: cache invalidation and
naming things. — Phil Karlton
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Linguistic Determinism

According to Benjamin Lee Whorf, thoughts are determined by the specific grammar
and vocabulary of the language in which ideas are expressed.
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Separation of Concerns

According to Edsger W. Dijkstra, “the separation of concerns”, even if not perfectly
possible, is yet the only available technique for effective ordering of one’s thoughts.
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Program Abstraction as Linguistic Construct

The function (including its name) can capture our mental chunking, or ab-
straction, of the problem. [1]

def process_string_explicit(s):
while s and s[0] == ' ':

s = s[1:]
while s and s[-1] == ' ':

s = s[:-1]

if len(s) > 2:
start = 1
end = len(s) - 1
middle = s[start:end]
middle_upcased = middle.upper()
s = s[0] + middle_upcased + s[-1]

return s

def process_string_trim(s):
s = s.strip()

if len(s) > 2:
start = 1
end = len(s) - 1
middle = s[start:end]
middle_upcased = middle.upper()
s = s[0] + middle_upcased + s[-1]

return s

The boundaries of procedural abstraction are determined by the meaning of “strip”.
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Good Name Example: Brute Force

A general problem-solving technique
that consists of systematically checking
all possible candidates for whether or
not each candidate satisfies the
problem’s statement.
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Good Name Example: Tree

Tree is hierarchically organized data
structure, where from the root item the
other items branch out into nodes and
leaves. A collection of trees is often
called a forest.
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Linguistic Antipatterns [2]

Definition

Linguistic Antipatterns (LAs) in software systems are recurring poor practices in the
naming, documentation, and choice of identifiers in the implementation of an entity,
thus possibly impairing program understanding.
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Antipatterns: Fallacious Method Name

Definition

Creating conflicting methods or functions regarding their functionality and naming.

def getFoos() -> Foo:
...
foo: Foo = ...
return foo

def isGoo() -> str:
...
return 'yes'

def setValue(self, value) -> Any:
...
return new_value

def getFoos() -> list[Foo]:
...
foos: list[Foo] = ...
return foos

def isGoo() -> bool:
...
return True

def setValue(self, value) -> None:
...
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Antipatterns: Binary Operator in Name

Definition

Method or function names that have binary operators like AND and OR are possible
violators of the single responsibility principle.

def render_and_save():

# render logic

...

# save logic

...
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Other Issues with Names

// "a" could mean anything
const a = 5

// "Paginatable" is a broken English
const isPaginatable = a > 10

// Hard to read
const onItmClk = () => {}

// Does not reflect expected result
const isEnabled = itemCount > 3
return <Button disabled={!isEnabled} />

// Units are unclear
int fileSize

// Redundant meta-data
String valueString

// Better
const postCount = 5

// Better
const hasPagination = postCount > 10

// Better
const onItemClick = () => {}

// Better
const isDisabled = itemCount <= 3
return <Button disabled={isDisabled} />

// Better
int fileSizeGb

// Better
String value
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Code Style

Definition

Is a set of rules or guidelines used when writing the source code for a computer
program.

▶ Reduce the number of choices a developer has to make.

▶ Makes code more readable and predictable.
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Role of Indentation

if(x < y) {

x= y;

y= 0;

} else {

x= 0;

y= y/2;

}

if (x < y) {

x = y;

y = 0;

} else {

x = 0;

y = y / 2;

}

Poorly formatted code distracts attention, takes longer to read.
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Readability: Blank Lines

// Eliminate whitespace from the beginning of t.

while (t.length() != 0 && isWhitespace(t.charAt(0))) {

t= t.substring(1);

}

// If t is empty, print an error message and return.

if (t.length() == 0) {

...

return false;

}

if (containsCapitals(t)) {

...

}

Use blank lines to separate logical parts of your algorithm.
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Readability: Order of Branches

if (condition) {

...

30 lines of code

...

} else single-statement

if (!condition) {

single-statement

} else {

...

30 lines of code

...

}

Put the shorter of the then-part and else-part first.
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Documentation

Definition

Written text or illustration that accompanies computer software or is embedded in
the source code.

Two main categories:

▶ System documentation.

▶ User documentation.
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Self-Documenting Code

Not descriptive:

List<Triple<Integer,Integer,Integer>> p = f();

More descriptive:

List<Point3D> path = findShortestPath();

Using good names, types and abstractions make code self-documenting.
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Tests Serve as Documentation

@Test

public void testWrapNull() {

assertEquals("", wrapper.wrap(null, 10));

}

@Test

public void testOverTheLimitShouldWrapAtSecondWord() {

assertEquals("word word\nword",

wrapper.wrap("word word word", 5));

}

@Test

public void testLongerThanLimitShouldNotWrap() {

assertEquals("word word", wrapper.wrap("word word", 6));

}
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Comments as Documentation

Useless comments (antipattern):

/* set age to 32 */

int age = 32;

Useful comments:

function addSetEntry(set, value) {

/* Don't return `set.add` because it's not chainable in IE 11. */

set.add(value);

return set;

}
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Documenting Methods

class InputStreamReader {

int read(char[] cbuf, int offset, int len) throws IOException

...

}

Important aspects of method documentation:

▶ How to call the method.

▶ What the results are.

▶ What the effects are.
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Documenting Methods

class InputStreamReader {

int read(char[] cbuf, int offset, int len) throws IOException

...

}

How to call the method:

Arguments cbuf is non-null, offset is non-negative, len is non-negative, offset
+ len is at most cbuf.length

Input state the receiver is open
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Documenting Methods

class InputStreamReader {

int read(char[] cbuf, int offset, int len) throws IOException

...

}

What the results are:

▶ The method returns -1 if the end of the stream has been reached before any
characters are read.

▶ Otherwise, the result is between 0 and len, and indicates how many characters
have been read from the stream.
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JavaDoc

/**

* This method reads up to <code>length</code> characters from the stream into

* the specified array starting at index <code>offset</code> into the

* array.

*

* @param buf The character array to receive the data read

* @param offset The offset into the array to start storing characters

* @param length The requested number of characters to read.

*

* @return The actual number of characters read, or -1 if end of stream.

*

* @exception IOException If an error occurs

*/

public int read(char[] buf, int offset, int length) throws IOException

04834580 Software Engineering (Honor Track) 2024-25 / Code Style & Documentation 23 / 28



JavaDoc
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JavaDoc Format

Description: A clear and concise textual explanation of the class, method, or field.
Intended to help developers understand its purpose and usage.
Block Tags: Metadata annotations that provide specific details about the class or
method. Common tags include:

▶ @author: Specifies the author(s) of the code.

▶ @version: Describes the version of the code.

▶ @param: Documents method parameters.

▶ @return: Explains the return value of a method.

▶ @exception (@throws): Details the exceptions thrown by a method.

▶ @see: Provides references to related resources (classes, methods, etc.).

▶ @since: Indicates when a specific feature was introduced.

▶ @serial: Used to document serializable fields or methods.

▶ @deprecated: Marks elements that are outdated and suggest alternatives.
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JavaDoc Best Practices

Useless JavaDoc (antipattern):
/**

* Sets the tool tip text.

*

* @param text the text of the tool tip

*/

public void setToolTipText(String text) {

Useful JavaDoc:
/**

* Registers the text to display in a tool tip. The text

* displays when the cursor lingers over the component.

*

* @param text the string to display. If the text is null,

* the tool tip is turned off for this component

*/

public void setToolTipText(String text) {
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Ambiguous Documentation

Definition (Ambiguity)

The quality of being open to more than one interpretation; inexactness.

def triples_sum_to_zero(l: list):

"""Takes a list of integers as an input. Returns True if there are three

distinct elements in the list that sum to zero, and False otherwise."""

...
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