
04834580 Software Engineering (Honor Track) 2024-25

Code Style & Documentation

Sergey Mechtaev
mechtaev@pku.edu.cn

School of Computer Science, Peking University

mailto:mechtaev@pku.edu.cn

Naming Things

There are only two hard things in Computer Science: cache invalidation and
naming things. — Phil Karlton

04834580 Software Engineering (Honor Track) 2024-25 / Code Style & Documentation 2 / 28

Linguistic Determinism

According to Benjamin Lee Whorf, thoughts are determined by the specific grammar
and vocabulary of the language in which ideas are expressed.

04834580 Software Engineering (Honor Track) 2024-25 / Code Style & Documentation 3 / 28

Separation of Concerns

According to Edsger W. Dijkstra, “the separation of concerns”, even if not perfectly
possible, is yet the only available technique for effective ordering of one’s thoughts.

04834580 Software Engineering (Honor Track) 2024-25 / Code Style & Documentation 4 / 28

Program Abstraction as Linguistic Construct

The function (including its name) can capture our mental chunking, or ab-
straction, of the problem. [1]

def process_string_explicit(s):
while s and s[0] == ' ':

s = s[1:]
while s and s[-1] == ' ':

s = s[:-1]

if len(s) > 2:
start = 1
end = len(s) - 1
middle = s[start:end]
middle_upcased = middle.upper()
s = s[0] + middle_upcased + s[-1]

return s

def process_string_trim(s):
s = s.strip()

if len(s) > 2:
start = 1
end = len(s) - 1
middle = s[start:end]
middle_upcased = middle.upper()
s = s[0] + middle_upcased + s[-1]

return s

The boundaries of procedural abstraction are determined by the meaning of “strip”.

04834580 Software Engineering (Honor Track) 2024-25 / Code Style & Documentation 5 / 28

Good Name Example: Brute Force

A general problem-solving technique
that consists of systematically checking
all possible candidates for whether or
not each candidate satisfies the
problem’s statement.

04834580 Software Engineering (Honor Track) 2024-25 / Code Style & Documentation 6 / 28

Good Name Example: Tree

Tree is hierarchically organized data
structure, where from the root item the
other items branch out into nodes and
leaves. A collection of trees is often
called a forest.

04834580 Software Engineering (Honor Track) 2024-25 / Code Style & Documentation 7 / 28

Linguistic Antipatterns [2]

Definition

Linguistic Antipatterns (LAs) in software systems are recurring poor practices in the
naming, documentation, and choice of identifiers in the implementation of an entity,
thus possibly impairing program understanding.

04834580 Software Engineering (Honor Track) 2024-25 / Code Style & Documentation 8 / 28

Antipatterns: Fallacious Method Name

Definition

Creating conflicting methods or functions regarding their functionality and naming.

def getFoos() -> Foo:
...
foo: Foo = ...
return foo

def isGoo() -> str:
...
return 'yes'

def setValue(self, value) -> Any:
...
return new_value

def getFoos() -> list[Foo]:
...
foos: list[Foo] = ...
return foos

def isGoo() -> bool:
...
return True

def setValue(self, value) -> None:
...

04834580 Software Engineering (Honor Track) 2024-25 / Code Style & Documentation 9 / 28

Antipatterns: Binary Operator in Name

Definition

Method or function names that have binary operators like AND and OR are possible
violators of the single responsibility principle.

def render_and_save():

render logic

...

save logic

...

04834580 Software Engineering (Honor Track) 2024-25 / Code Style & Documentation 10 / 28

Other Issues with Names

// "a" could mean anything
const a = 5

// "Paginatable" is a broken English
const isPaginatable = a > 10

// Hard to read
const onItmClk = () => {}

// Does not reflect expected result
const isEnabled = itemCount > 3
return <Button disabled={!isEnabled} />

// Units are unclear
int fileSize

// Redundant meta-data
String valueString

// Better
const postCount = 5

// Better
const hasPagination = postCount > 10

// Better
const onItemClick = () => {}

// Better
const isDisabled = itemCount <= 3
return <Button disabled={isDisabled} />

// Better
int fileSizeGb

// Better
String value

04834580 Software Engineering (Honor Track) 2024-25 / Code Style & Documentation 11 / 28

Code Style

Definition

Is a set of rules or guidelines used when writing the source code for a computer
program.

▶ Reduce the number of choices a developer has to make.

▶ Makes code more readable and predictable.

04834580 Software Engineering (Honor Track) 2024-25 / Code Style & Documentation 12 / 28

Role of Indentation

if(x < y) {

x= y;

y= 0;

} else {

x= 0;

y= y/2;

}

if (x < y) {

x = y;

y = 0;

} else {

x = 0;

y = y / 2;

}

Poorly formatted code distracts attention, takes longer to read.

04834580 Software Engineering (Honor Track) 2024-25 / Code Style & Documentation 13 / 28

Readability: Blank Lines

// Eliminate whitespace from the beginning of t.

while (t.length() != 0 && isWhitespace(t.charAt(0))) {

t= t.substring(1);

}

// If t is empty, print an error message and return.

if (t.length() == 0) {

...

return false;

}

if (containsCapitals(t)) {

...

}

Use blank lines to separate logical parts of your algorithm.

04834580 Software Engineering (Honor Track) 2024-25 / Code Style & Documentation 14 / 28

Readability: Order of Branches

if (condition) {

...

30 lines of code

...

} else single-statement

if (!condition) {

single-statement

} else {

...

30 lines of code

...

}

Put the shorter of the then-part and else-part first.

04834580 Software Engineering (Honor Track) 2024-25 / Code Style & Documentation 15 / 28

Documentation

Definition

Written text or illustration that accompanies computer software or is embedded in
the source code.

Two main categories:

▶ System documentation.

▶ User documentation.

04834580 Software Engineering (Honor Track) 2024-25 / Code Style & Documentation 16 / 28

Self-Documenting Code

Not descriptive:

List<Triple<Integer,Integer,Integer>> p = f();

More descriptive:

List<Point3D> path = findShortestPath();

Using good names, types and abstractions make code self-documenting.

04834580 Software Engineering (Honor Track) 2024-25 / Code Style & Documentation 17 / 28

Tests Serve as Documentation

@Test

public void testWrapNull() {

assertEquals("", wrapper.wrap(null, 10));

}

@Test

public void testOverTheLimitShouldWrapAtSecondWord() {

assertEquals("word word\nword",

wrapper.wrap("word word word", 5));

}

@Test

public void testLongerThanLimitShouldNotWrap() {

assertEquals("word word", wrapper.wrap("word word", 6));

}

04834580 Software Engineering (Honor Track) 2024-25 / Code Style & Documentation 18 / 28

Comments as Documentation

Useless comments (antipattern):

/* set age to 32 */

int age = 32;

Useful comments:

function addSetEntry(set, value) {

/* Don't return `set.add` because it's not chainable in IE 11. */

set.add(value);

return set;

}

04834580 Software Engineering (Honor Track) 2024-25 / Code Style & Documentation 19 / 28

Documenting Methods

class InputStreamReader {

int read(char[] cbuf, int offset, int len) throws IOException

...

}

Important aspects of method documentation:

▶ How to call the method.

▶ What the results are.

▶ What the effects are.

04834580 Software Engineering (Honor Track) 2024-25 / Code Style & Documentation 20 / 28

Documenting Methods

class InputStreamReader {

int read(char[] cbuf, int offset, int len) throws IOException

...

}

How to call the method:

Arguments cbuf is non-null, offset is non-negative, len is non-negative, offset
+ len is at most cbuf.length

Input state the receiver is open

04834580 Software Engineering (Honor Track) 2024-25 / Code Style & Documentation 21 / 28

Documenting Methods

class InputStreamReader {

int read(char[] cbuf, int offset, int len) throws IOException

...

}

What the results are:

▶ The method returns -1 if the end of the stream has been reached before any
characters are read.

▶ Otherwise, the result is between 0 and len, and indicates how many characters
have been read from the stream.

04834580 Software Engineering (Honor Track) 2024-25 / Code Style & Documentation 22 / 28

JavaDoc

/**

* This method reads up to <code>length</code> characters from the stream into

* the specified array starting at index <code>offset</code> into the

* array.

*

* @param buf The character array to receive the data read

* @param offset The offset into the array to start storing characters

* @param length The requested number of characters to read.

*

* @return The actual number of characters read, or -1 if end of stream.

*

* @exception IOException If an error occurs

*/

public int read(char[] buf, int offset, int length) throws IOException

04834580 Software Engineering (Honor Track) 2024-25 / Code Style & Documentation 23 / 28

JavaDoc

04834580 Software Engineering (Honor Track) 2024-25 / Code Style & Documentation 24 / 28

JavaDoc Format

Description: A clear and concise textual explanation of the class, method, or field.
Intended to help developers understand its purpose and usage.
Block Tags: Metadata annotations that provide specific details about the class or
method. Common tags include:

▶ @author: Specifies the author(s) of the code.

▶ @version: Describes the version of the code.

▶ @param: Documents method parameters.

▶ @return: Explains the return value of a method.

▶ @exception (@throws): Details the exceptions thrown by a method.

▶ @see: Provides references to related resources (classes, methods, etc.).

▶ @since: Indicates when a specific feature was introduced.

▶ @serial: Used to document serializable fields or methods.

▶ @deprecated: Marks elements that are outdated and suggest alternatives.

04834580 Software Engineering (Honor Track) 2024-25 / Code Style & Documentation 25 / 28

JavaDoc Best Practices

Useless JavaDoc (antipattern):
/**

* Sets the tool tip text.

*

* @param text the text of the tool tip

*/

public void setToolTipText(String text) {

Useful JavaDoc:
/**

* Registers the text to display in a tool tip. The text

* displays when the cursor lingers over the component.

*

* @param text the string to display. If the text is null,

* the tool tip is turned off for this component

*/

public void setToolTipText(String text) {

04834580 Software Engineering (Honor Track) 2024-25 / Code Style & Documentation 26 / 28

Ambiguous Documentation

Definition (Ambiguity)

The quality of being open to more than one interpretation; inexactness.

def triples_sum_to_zero(l: list):

"""Takes a list of integers as an input. Returns True if there are three

distinct elements in the list that sum to zero, and False otherwise."""

...

04834580 Software Engineering (Honor Track) 2024-25 / Code Style & Documentation 27 / 28

References I

[1] Allen Downey et al.
How to think like a computer scientist: learning with python.
2008.

[2] Venera Arnaoudova, Massimiliano Di Penta, and Giuliano Antoniol.
Linguistic antipatterns: What they are and how developers perceive them.
Empirical Software Engineering, 21:104–158, 2016.

04834580 Software Engineering (Honor Track) 2024-25 / Code Style & Documentation 28 / 28

