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Reaching Definitions Analysis (Recap)

Reaching Definitions = Most common Data Flow schema

An assignment (aka definition) of the form [x := a]' may reach a certain program
point if there is an execution of the program where x was last assigned a value at [

when the program point is reached.

GOAL: identify all definitions reaching the Entry and Exit of each elementary block.



Example Program (Factorial)

Computes factorial of number stored in variable x and stores result in variable z.

The factorial of a non-negative integer n is the product
of all positive integers less than or equal to n:

n=nxn—-1)*xn—-2)*x(n—3)*x--*x3x2x%1
=nx(n-—1)!




Reaching Definition Analysis
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NODES = elementary blocks

EDGES = describe how control might pass from
one elementary block to another

A definition of a variable v at program point d
reaches program point u (possibly using that
variable) iff 3 a control-flow path from d to u,
where along that path there are no other
assignments to that variable v.



Reaching Definition Analysis

1,

%; __ X]] 5 A [y := x]! is a reaching definition for [z := 1]?
while [y > 1]3 do [y := x]! reaches the entry and exit of [z := 1]*
(Iz =z xyl* 3,1 2

ly =y —1]°);
[y — ()] (x,?) reaches the entry to 2

* "2 ysed to record uninitialised variables



Reaching Definition Analysis

— ~+]1.
P’ T );]] 5 \ [z := 1]? is NOT a reaching definition for [y =y — 1]°
Z = ;
while [y > 1]34d0 [z := 1]? cannot reach the entry to [y =y — 1]5
(lz =z *y] 5 (2 2) 5
[3] _6 Yy~ 1] )’ : \ The value of z defined at 2 is no longer
[y " ] available when the program point (label 5) is reached

([z = z = y]* kills it (update it)

. )

(,4)




Expected Result

1 RDepnery (1) RD e (1)
[y = x]'; 1 GDOD.ED 51, 0.D,(27)

[z = 1]?; | D0 D.@Y) ), 0D, (2,2)
while [y > 1]°do  [3[®x7. 01D, (11,5),.(2,2), 4| *?),».1D,.5).(22),(24)
([z =z * y]*; 4 (x?7),».D,».5),z2,z4| «?2),31D,05), 24D
[y =y—1]°); [5| &2)6,D,(,5, ¢4 (x,2), (5.5, (z.4)

[y :== 0]° 6 (x,7),,1),(»,5),(22),(z4)| 7),(,6),(22),(z4)




Expected Result

1 RD ¢piry (D) RD it (D)
[y = x]%; 1 eD.0.@0) (62,3, D, &)

[z = 1]%; 2 (7)., D, (z7?) (x7),(y, D, (22)
while [y > 1]°do  [3[®x7. 01D, (11,5),.(2,2), 4| *?),».1D,.5).(22),(24)
(lz =z = y]4; 4 (x,7),»,1,(¥5"z2),z0| x7?),1),W5), (=4
[y =y—1]°); [5| &D.0.D.¢5" 4 (x,7),(%,5), (z,4)

ly == 0] 6|(x,?), D, 1,5,z2), 4| (x7?),1,6),(22),(z4)

* Assuming you are entering in the While loop for the second time.




Data Flow Analysis

(z,2) no longer available
(because updated)

RDentry (l) RDexit (l)
x,?),».7),(z7?) (x,?),(y,1),(z?)
(x,?),(y,1),(z7) (x,7),(y, 1), (z)2)

(x,7),(y,1),(¥,5),(22),(z4)

(x,7),(y,1),(¥,5),(2/2),(z,4)

(x,?), 1, (»,5),(z2),(z4)

(x,2), (3, 1), (,5)7(z 4)

(x,?),(»,1,(.5), (=4

(x,?),(,5),(z,4)

O N | A, WIN |-

(x,?), 1, (»,5),(z,2),(z,4)

(x,7),(,6),(2,2),(2,4)




Data Flow Analysis Equations (Recap)

Equations that capture how Equations that capture how information
information is updated by each node: is propagated through CFG:

RDexit(1) = (RDentry(D\ {(y, ) | L € Lab} U {(y, 1)} RDenery(1) ={(x,7),(y,7),(z,7)}

RD,yit(2) = (RDenery(2)\{(2,1) | L € Lab} U {(z, 2)} RD¢piry(2) = RDgyir(1)

RD,»it(3) = RDentry(3) RDptry(3) = RDeyit(2) U RDgyir (5)

RD¢yit(4) = (RDenery W\ {(z,D) | | € Lab} U {(z,4)} RDentry(4) = RDgyit(3)

RDexit(S) = (RDentry(S)\ {(y: ) |l € Lab} U {(v,5)} RDentry(S) — RDexit(4‘)

RDexit(6) = (RDentry(6)\ {(y; ) |l € Lab} U {(y,6)} RDentry(6) = RDexit(B)



Data Flow Analysis Equations

* The resulting system of equations defines the twelve sets:

RDnry(1), e, RDgyir(6) = RD = RDj, .....,RD1,

* Therefore, RD is a tuple of 12 sets of pairs of variables (v) and labels ([):

{I((v, D, (v D), ..., (v, l)).’ l((v, D, (0, ..., (v, l)).’ s, I((v, D,(v D), ..., (v, l)).}

RD, RD, RD,,

* Can be represented as defining a function:

RD = F(RD)



Data Flow Analysis Equations

+ F:(P(Var, x Lab,))'? - (P(Var, X Lab,))

Power set of all possible couples (v,1) Vv € Var Al € Lab

(0,6, D), ...,(x,6), ¥, D,..,(,6),(z,1), ..., (2,6), ((x, D(x,2)), ((x, D(x, 2) (x, 3)), ...,€)}

« (P(Var, x Lab,))'? can be treated as partially ordered set

* Let define the ordering RD © RD' iff Vi: RD; € RD;’



Data Flow Analysis: The Least Solution

* Partially ordered set

RD E RD'
Iff VlRDl C RDi,

{((x1D)(x%2)..(x,6)(v1)(¥,2)...(v6)(z1)(z,2) ...(z,6)),®
(x1)(x%2)..(x6)(v,1)(y.2)...(v,6)(z,1)(z,2)...(z,6)),

(1) (%2).-(%6) 1) (3:2).-5/6) (1) @2)..(2,6))) RD'12

{((x1D)(%2)..(x,6)(yv,1)(¥.2)..(v,6) (1) (z,2) ...(2,5)),
(xD(x2)..x6)(y,1)([¥2)..(y,6)(z,1)(z,2)...(z,5)),

¢ .("(x,l) (%2)..(x6)(v,D)(v.2)...(v,6)(z,1)(2,2)...(z,5)) }

{((%2)..(x6)(y D) ([¥:2)-.1:6) (1) (2,2)..(2,6)),
(%2)(x6)(%,1)(z,6)),

(%2)(%6) G F2)¥6) (2 1)(22)(26))}




Theorem

A fixed point of a function F is a value x such that x = F(x).

Theorem. Let S be a finite set {x4, x5, X3, ..., X, }, L be the powerset of S, thatisP(S).
Let F: L — L be a monotone function, thatis [ E [’ implies that F (1) E F(l"). Then,

e there exists such n that F**1(@) = F" (9)
* F*(Q) is the least fixed point of F

This theorem enables a simple algorithm to solve data-flow equations: finding the least
solution by iteratively applying F until it stabilises:

* F*(Q) is the least solution to the equation system
e Other solutions are less precise



Partial Ordering

A partial ordering is arelation =: L X L — {true, false} thatis
* reflexive (VI: [ E [)
* transitive (Vll, lz, l3: ll C lz N\ lz C 13 = ll C 13)

e anti-symmetric (VI{,L: L ELALCEl; =1 =1,).

A partially ordered set (L,C) is a set L equipped with a partial
ordering C.

llclz ::llglz/\llilz



Partial Order Example

.= 22 _ subsets of whole numbers

L
e C := C — subset relation

e Reflexivity, transitivity and anti-symmetry are implied by the
definition of €

* This relation is a partial order and not a total order, because some
elements are incomparable

* For example, neither {1,2} < {2,3} nor {2,3} € {1,2}



Upper Bounds

A subset Y of L has
 anupperbound !l € LifVl' e Y:l' E [;
calowerboundl e Lifvl  eY:lC .

The least upper bound [ of Y (or || Y) satisfies [ E [, whenever [, is
another upper bound of Y. Wh

The greatest lower bound [ of Y (or [1Y) satisfies [, E [ whenever [, is
another lower bound of Y.

Ll is the join operator: 1, U I, := LI{l{, ,};

[1is the meet operator: [; M [, := [1{l4,[,}.



Upper and Lower Bounds: Example

Greatest Element

Y = {{x,y}.{y,2}}
ny = {y}

Ui} = {0}
n{} =72

Least Element <---------- --+> bottom L

UL={xy,z}
nL={0}



Complete Lattice

A complete lattice L = (L, ) is a partially ordered set such that all
subsets have least upper bounds as well as greatest lower bounds.

Furthermore, L= 1@ =[] L istheleastelement, T=1[10 = L L is the
greatest element.



Complete Lattice Example

o [ := 21123} _gybsets of the set of three numbers
C := C — subset relation

{1,2,3}
{1,2} (2,3}
Arrow between [; and [,
means [; E [, }“
{1,2,3} is the greatest element
@ is the least element {1} {3}



Chains

A subset Y € L of a partially ordered set (L,E) is a chainif VI, [, €
Y:(l; E1,) vV (l, E ;). Thus, a chain is a totally ordered subset of L.

A sequence (l,,),,en isan ascendingchainifn<m=10,E [,

A sequence (1,,),,en eventually stabilises iff
dng e N:vnenzny =1, =1,

A partially ordered set (L, =) satisfies ascending chain condition iff all
ascending chains eventually stabilise.



Monotone Framework Definition

e L is the property space
e Ll : 2L = L is the combination operator

* fo: L — L is the transfer function
* A function f, is monotone iff [ = [ implies f,(1) E f,(l")

A monotone framework is
* Lis a complete lattice that satisfies the ascending chain condition

* A set F of monotone functions from L to L that contains the identity function
and that is closed under function composition



Instances Of Monotone Frameworks

An instance of a monotone framework
 The complete lattice, L
* The space of functions, F

* A finite flow, F, that typically is flow(program) or
flowR(program)

* Afinite set of extremal labels, E, that it typically {init(program)} or
final(program)

 An extremal value, ¢ € L, for the extremal labels

* A mapping f. From labels to transfer functions F



Analysis Equations

Analysise (£) = U{Analysis, ()| (¢, ¢) €EF} UL

¢ v ifPEE
whereLE—{l iftaE

Analysise (£) = f,(Analysise (£))

€ The output of each basic block is computed by applying the transfer function to
the analysis (for example at the beginning of the block).

<& The analysis results for each edge of the control flow are then combined with
some initial information in case of extremal elements.



Forward/Backward, Must/May

* Forward: F is flow(program), Analysis, concerns entry
conditions, Analysise concerns exit conditions

* Backward: F is flow® (program), Analysis,. concerns exit
conditions, Analysise concerns entry conditions

 Must: L] is N, search for the greatest solution
 May: Ll is U, search for the least solution



Transfer Functions in Classical Analyses

« F:={f:L » L| 3, lg: f(1) = (I\l) U lg}
* Includes the identity function (ly, = 1, = @)
* Monotone

* fo@ = (1\Kill([BI) ) U gen([B]),

where [B]? € blocks(program)



Instances of Classical Analyses

Each of the four Classical Analyses satisfies the monotone framework:

Available Reaching Very Busy Live

Expressions Definitions Expressions Variables
L P(AExp,) P(Var, x Lab,) P(AExp,) P(Var,)
C D C D c
i N U N U
1 AExp, 0 AExp, N
L 0 {(z,?)|z€ FV(S,\)} ) 0
E {init(S,)} {init(S,)} final(S..) final(S,)
F flow(S,) flow(S,) flow™(S,) Aow™(S,)
F {f:L—=L|3,l,: fl)=(0U\lWk)Ul}
fe fe(l) = (1\ kill([B]%)) U gen([B]%) where [B]¢ € blocks(S)




Available Expressions

AExp(program) _ s bsets of program expressions

AExp(program)
ei=0

« £ := {init(program)}
 F = flow(program)



Reaching Definitions

Vars(program)XxLabels(program)

1
)

= C N
I
S C N

e i:=1{(x,?)|x € Vars(program)}
« £ := {init(program)}
 F = flow(program)

— sets of pairs (variable, program)



Very Busy Expressions

e [ := 24Exp(program) _ ghsets of program expressions
e L (=2

e U:=n

e | := AExp(program)

i =0

* £ := final(program)
« F := flowR(program)



Live Variables

o [ := 2Vars(program) _ gypsets of program variables
e L :=0C
e L:=U
e | :=0
i =0

« £ := init(program)
« F := flowR(program)



Property of Classical Analyses

Theorem. The four classical analyses are monotone frameworks.

Proof (sketch):

1. The functions in F are monotone, because
* Easy to show that (I \ [;,) U l_g is monotone for both € and 2.

2. F has the identify function

3. Easy to show that F is closed under composition



Instance of Monotone Framework: Example

Available Expressions Analysis:

x :=a+ bl
ly := a = b
while |y > a+ b]3 do
(Ja:= a + 1]4;
[x:=a + b]>)



Instance of Monotone Framework: Example

Available Expressions Analysis:

[x :=a + b]%; Complete lattice:
ly := a= bl (P{a+b,a*b,a+1}),2)
while |y > a+ b]3 do —
(Ja:= a + 1]4;
[x:=a+ b]5) Least Element:

{fa+b,a*xb,a+ 1}



Instance of Monotone Framework: Example

Available Expressions Analysis:

[x :=a + b]%; Forward information flow:
= qa * bl?%;
\[/[:i/hlle [y >]a -|— b]3 dO i {(1' 2)' (21 3)1 (3) 4)) (4)5); (5) 3)}
(la:=a + 1]4;

[x:=a + b]>)



Instance of Monotone Framework: Example

Available Expressions Analysis:

[x :=a+ b]Y Extremal label:
ly :=a=* bl {13
while |y > a+ b]3 do —

([a:=a+1]4; Extremal value:

[x:=a + b]>) 0



Instance of Monotone Framework: Example

Available Expressions Analysis:

[x := a + b]%; Transfer functions:
[y :=a=b]* P
while [y > a + b]3 do —— () =Y Uta+bj
(Ja:=a + 1]4; fAE,(Y) = YUu{a = b}
[x:=a+ b]%) fAE,(Y) = YU{a + b}

40 = Y\{a+baxba+1]
fAE(Y) = YU {a + b}

forY € {a+b,a*b,a+ 1}



Maximal Fixed Point (MFP)

Computes the least solution to the data flow equation: fixed point of some
function.

A fixed point of a function is an element that is mapped to itself by the functioﬂ
That is, ¢ is a fixed point of a function f if ¢ belongs to both the domain and

I_the codomain of f, f(c) = c. [Wikipedia]



Maximal Fixed Point (MFP)

W is the worklist of edges
* w € Wmeans that the result of analysis has changed at the exit of w

* Analysis is an array containing the analysis results (labels are
indexes)



MFP Algorithm

e Starts from initial results (e.g. an initial value) and iteratively applies transfer
functions until a fixed point is reached.

* Computes 2 functions: MFP, and MF P4 (results of the analysis).

l

* INPUT: Aninstance (L, F,F,E, 1, f) of a Monotone Framework
* OUTPUT: MFP, and MFP4



Example

[x == a + b];
[y = a = b]?;

while [y > a + b]? do

la = a + 1]%;
[x = a + b]°;

Available Expressions Analysis
Lattice: (2@ th.a*b,a+1} oy

Transfer functions:

fo(l) = (l \ killAE([B]f)) U genAE([B

1)



MFP Algorithm

STEP 1 - INITIALISATION (of W and Analysis)

W = nil,

for ({,¢')EF: W = cons((f, ), W),

for? € FUE: if | € E then Analysis[f] = 1
else Analysis[f] = 1

STEP 2 - ITERATION (updating W and Analysis)

while W # nil
(2,¢") = head(W),
W = tail(W),
if fr(Analysis[€]) & Analysis[£'] then
Analysis[£'] .= Analysis[£'] U f,(Analysis[£]),
for €"such that (£',¢") € F: W := cons((£',£"),W)

STEP 3 - PRESENTING THE RESULT (MFP, and MFP,)

for £ € FUE: MFPy(£) := Analysis|f],
MFP4(£) := fp(Analysis[£])



MFP Algorithm

STEP 1 - INITIALISATION (Of W and AnalySlS) * The worklist is initialised by adding all the edges

W := nil, (from the CFG) to be analysed.

for (£, £) €F: W := COnS((f;fl); W), e For each label (node), the analysis array is

for£ € FUE: if |l € E then Analysis[£] = initialised. It will store the result of the e.g.
else Analysis[f] = 1 Available Expressions for that label, that will be

computed from the initial results using the
result for the extreme labels ¢t € L (e.g. empty).




MFP Algorithm

* The while loop is executed until the worklist of
edges has at least one edge (i.e. until a fixed
point is reached).

* For each iteration, one of the edges is analysed:
- select the one at the top of the worklist

STEP 2 - ITERATION (updating W and Analysis) — | ~ :)aeI:mntl:; mf;j;vzzgeresuhf array in  the

while W # nil - try to propagate information along this edge
(£,%") == head(W), (applying recursively the transfer functions)
W = tail(W), - check whether there has been any update
if fr(Analysis[£]) & Analysis[£'] then (something new learnt, i.e. the information in
AnalysiS[f’] = AnalysiS[i”] U ff(AnalySiS[f]); the analysis result for the outgoing edge is

for £""such that (£',¢") € F: W := cons((£',£"), W) different because it includes the new result)




MFP Algorithm

- If TRUE:

the information at the end of the edge needs to
be updated with the new propagated results.

Make sure that, at the next step, this new

STEP 2 - ITERATION (updating W and Analysis) . information is going to be propagated:

- take all the edges starting from the node

while W # nil where the information was updated and add
(2,£") := head(W), them to the worklist (so that all subsequent
W = tail(W), edges are also updated).
if fr(Analysis[€]) & Analysis[£'] then
Analysis[£'] .= Analysis[£'] U f,(Analysis[£]), - If FALSE:

for €"such that (£',¢") € F: W := cons((£',¢'"),W) No propagated information.
No need to consider this edge again.

The sequence stabilises:
That’s why Ascending Chain Condition is needed




MFP Algorithm

STEP 2 - ITERATION (updating W and Analysis) ——

while W # nil
(2,¢") = head(W),
W = tail(W),
if fr(Analysis[€]) & Analysis[£'] then
Analysis[£'] .= Analysis[£'] U f,(Analysis[£]),
for €"such that (£',¢") € F: W := cons((£',£"),W)

The algorithm produces a chain that, given the AC
property of the framework, “eventually” stabilises.
Therefore the algorithm is going to terminate.

4

A

That’s why Ascending Chain Condition is needed




MFP Algorithm

* After the while loop terminates:
- return the analysis results
( functions MFP, and MFP)
stored at the exit of each label, to which the
transfer functions were applied.

STEP 3 - PRESENTING THE RESULT (MFPs and MFP4)—

for £ € FUE: MFPy(£) := Analysis|f],
MFP4(£) := fp(Analysis[£])




MFP: Example

[x:=a+b]1;

[y == a*b]?;

while [y>a+b] do
[a = a + 1]%;
[x = a + b]°;

INPUT: Available Expressions Analysis

instance of the monotone framework, as it creates:

Lattice L: (2{¢*b.axbat+l} o)

—> finite: it satisfies the Ascending Chain Condition

Transfer functions:
fo(D) = (l \ killAE([B]{))) U genAE([B]{))

—> monotone: constant sets combined preserving all the
conditions of the monotone framework



MFP: Example

INPUT: Available Expressions Analysis

instance of the monotone framework, as it creates:

[x :==a+ b]%; Lattice L: (2ta+b.axbatl} o)
[y —ar b]z; 0 Greatest
while [y > a + b]? do e

[a ==a+ 1]% (a+ b}

1
[x :=a + b]>; S

{a+b,ax*b} {axb,a+ 1}

Least

{fa+b,a*xb,a+ 1} Element 1



Step 1 (Initialisation)

w:{(1,2),(2,3),(3,4),(4,5),(53)}

[x = a+ b]*
[y == a * b]?
[y > a+b]3
[a=a+1]*

V label, the Analysis array is initialised

Results of Analysis

Analysis|1]: @
Analysis|2]:{a + b,a * b,a + 1}
Analysis|3|:{a + b,a * b,a + 1}
Analysis|4]:{a + b,a*b,a + 1}
Analysis|5]:{a + b,a*b,a + 1}

The analysis result for initial label (node 1) is empty.




Step 2

w:{Q@,2),(2,3),(3,4),(4,5),(53)}

[x == a + b]?
[y == a * b]?
[y > a+b]3
[a=a+1]*

Inspect 1%t edge in the worklist: (1,2)
+

Propagate information, from node 1 to 2

Results of Analysis

Analysis|1]: @
Analysis|2]: {a + b}

Analysis(3]:{a+ b,a*b,a + 1}
Analysis|4]:{a + b,a * b,a + 1}
Analysis[5]:{a+ b,a*b,a + 1}

The analysis result for node 2 (outgoing edge) has changed:
only (a + b) has propagated from the previous node.



Step 2

w:{(2,3),(2,3),(3,4),(4,5),(53)}

[x == a + b]?
[y = a * b]?
ly >a+b]3
[a:=a+1]*
[x = a+ b]°

Edge (2, 3) added on top of the worklist

Results of Analysis

Analysis|1]: @
Analysis|2]: {a + b}

Analysis(3]:{a+ b,a*b,a + 1}
Analysis|4]:{a + b,a * b,a + 1}
Analysis[5]:{a+ b,a*b,a + 1}

 PROPAGATION: YES
» UPDATED NODE: 2
* EDGES TO UPDATE: (2,3)




Step 3

Inspect 1t edge in the worklist: (2, 3)
W:{(2,3),(2,3),(3,4),(4,5),(53)} +
Propagate information, from node 2 to 3

[x := a+ b]!
Results of Analysis
[y = axb]* Analysis[1]: @
Analysis|2]:{a + b}
[y > a+ b]? AnalySl:S:3: {a + b,a * b}
Analysis[4]:{a + b,a *b,a + 1}
Analysis|5):{a + b,a * b,a + 1}
[a ==a+ 1]*

The propagated information now contains the expressions
[x == a+ b]° (a + b) which is the analysis result for the previous node 2,
and (a * b) computed at node 2.




Step 3

w:{(@3,4),(2,3),(3,4),(4,5),(53)}

[x == a + b]?
[y = a * b]?
ly >a+b]3
[a:=a+1]*
[x = a+ b]°

Edge (3,4) added on top of the worklist

Results of Analysis

Analysis|1]: @
Analysis[2]:{a + b}
Analysis|3]:{a + b, a * b}
Analysis|4]:{a + b,a * b,a + 1}
Analysis[5]:{a+ b,a*b,a + 1}

 PROPAGATION: YES
» UPDATED NODE: 3
* EDGES TO UPDATE: (3,4)




Step 4

w:{(@3,4),(2,3),(3,4),(4,5),(53)}

[x = a+ b]*
[y == a * b]?
ly >a+b]3
[a:=a+1]*

[x :=a+b]°

Inspect 1t edge in the worklist: (3,4)
+

Propagate information, from node 3 to 4

Results of Analysis

Analysis|1]: @
Analysis[2]:{a + b}
Analysis|3]:{a + b, a * b}
Analysis|4]:{a + b, a * b}
Analysis[5]:{a+ b,a*b,a + 1}

Node 4 analysis results updated.




Step 4

w:{(4,5),(2,3),(3,4),(4,5),(53)}

[x == a + b]?
[y = a * b]?
ly >a+b]3
[a:=a+1]*
[x = a+ b]°

Edge (4, 5) added on top of the worklist

Results of Analysis

Analysis|1]: @
Analysis[2]:{a + b}
Analysis|3]:{a + b, a * b}
Analysis|4]:{a + b, a * b}
Analysis[5]:{a+ b,a*b,a + 1}

 PROPAGATION: YES
» UPDATED NODE: 4
* EDGES TO UPDATE: (4,5)




Step 5

w:{(4,5),(2,3),(3,4),(4,5),(53)}

Inspect 1t edge in the worklist: (4,5)
+

Propagate information, from node 4 to 5

[x = a+ b]*
[y == a * b]?
[y > a+b]3
[a=a+1]*

[x :=a+b]°

Results of Analysis

Analysis|1]: @
Analysis[2]:{a + b}
Analysis|3]:{a + b, a * b}
Analysis|4]:{a + b, a * b}
Analysis|5]: @

The analysis result for node 5 is emptied because all the
available expressions are killed by the assignment at node 4.



Step 5

w:{(5,3),(2,3),(3,4),(4,5),(53)}

[x == a + b]?
[y = a * b]?
ly >a+b]3
[a:=a+1]*
[x = a+ b]°

Edge (5, 3) added on top of the worklist

Results of Analysis

Analysis|1]: @
Analysis[2]:{a + b}
Analysis|3]:{a + b, a * b}
Analysis|4]:{a + b, a * b}
Analysis|5]: @

 PROPAGATION: YES
» UPDATED NODE: 5
* EDGES TO UPDATE: (5,3)




Step 6

Inspect 1t edge in the worklist: (5,3)
w:{(5,3),(2,3),(3,4),(4,5),(5,3)} +

Propagate information, from node 5 to 3

[x :== a+ b]*
Results of Analysis
[y = axb]* Analysis[1]: @
Analysis|2]:{a + b}
[y > a+ b]? AnalySl:S:3: :{a + b}
Analysis|[4]:{a + b,a * b}
Analysis|5]: @
l[a ==a+1]*
Expression (a * b) removed from node 3, because previously

[x == a+ b]° killed by statement 4.




Step 6

w:{(@3,4),(2,3),(3,4),(4,5),(53)}

[x == a + b]?
[y = a * b]?
ly >a+b]3
[a:=a+1]*
[x = a+ b]°

Edge (3,4) added on top of the worklist

Results of Analysis

Analysis|1]: @
Analysis[2]:{a + b}
Analysis|3]: {a + b}
Analysis|4]:{a + b, a * b}
Analysis|5]: @

 PROPAGATION: YES
» UPDATED NODE: 3
* EDGES TO UPDATE: (3,4)




Step /

Inspect 1t edge in the worklist: (3,4)
w:{(3,4),(2,3),(3,4),(4,5),(5,3)} +
Propagate information, from node 3 to 4

[x :== a+ b]*
Results of Analysis

[y = axb]’ Analysis[1]: @
Analysis|2]:{a + b}

[y > a + b]? AnalySl:S:3: :{a + b}
Analysis|4]:{a + b}
Analysis|5]: @

[a ==a+ 1]*

Node 4 analysis results updated.

[x :=a+ b]°




Step /

w:{(4,5),(2,3),(3,4),(4,5),(53)}

[x == a + b]?
[y = a * b]?
ly >a+b]3
[a:=a+1]*
[x = a+ b]°

Edge (4, 5) added on top of the worklist

Results of Analysis

Analysis|1]: @
Analysis[2]:{a + b}
Analysis[3]: {a + b}
Analysis|4]: {a + b}
Analysis|5]: @

 PROPAGATION: YES
» UPDATED NODE: 4
* EDGES TO UPDATE: (4,5)




Step 8

w:{(4,5),(2,3),(3,4),(4,5),(53)}

Inspect 1%t edge in the worklist: (4,5)
+

Propagate information, from node 4 to 5

[x = a+ b]*
[y == a * b]?
[y >a+b]3
[a = c\l/+ 1]

N

[x :=a+ b]°

Results of Analysis

Analysis
Analysis
Analysis
Analysis
Analysis

No change in the outcoming node 5 of current edge.

1.

2
3
4
5

:Q
:{a + b}
:{a + b}
:{a + b}
)



Step 8

w:{(2,3),(3,4),(4,5),(5,3)}

The worklist starts to get smaller until it
becomes empty

[x == a + b]?
[y = a * b]?
[y > a+b]3
[a:=a+1]*
[x = a+ b]°

Results of Analysis

Analysis|1]: @
Analysis[2]:{a + b}
Analysis[3]: {a + b}
Analysis[4]:{a + b}
Analysis|5]: @

e PROPAGATION: NO
At each iteration, no new information is propagated
(the analysis results array no longer changes) .




Step 9

w:{(3,4), (4,5),(5,3)}

[x :== a+ b]*

[y == a * b]?

[y >a+b]3

[a ==a+ 1]*

[x :=a+b]°

Results of Analysis

Analysis
Analysis
Analysis
Analysis
Analysis

1.

2
3
4
5

1)

{a + b}
{a + b}
{a + b}

0



Step 10

W:{(4,5), (5,3)}

[x = a+ b]*
[y == a * b]?
[y >a+b]3
[a:=a+1]*

[x :=a+ b]°

Results of Analysis

Analysis
Analysis
Analysis
Analysis
Analysis

1.

2
3
4
5

1)

{a + b}
{a + b}
{a + b}

0



Step 11

wW:{(5,3)}

[x = a+ b]*
[y == a * b]?
[y >a+b]3
[a:=a+1]*

Results of Analysis

Analysis
Analysis
Analysis
Analysis
Analysis

1.

2
3
4
5

1)

{a + b}
{a + b}
{a + b}

0



Worklist empty, the algorithm terminates.

It computes the least (or MFP) solution to
the instance of the framework in input:
final AEs V node (fixed point reached).

[x == a + b]?
[y = a * b]?
[y > a+b]3
[a=a+1]*
[x = a+ b]°

Results of Analysis: OUTPUT

Analysis|1]: @
Analysis[2]: {a + b}
Analysis[3]: {a + b}
Analysis[4]: {a + b}
Analysis[5]: @

In node 3 the expression (a + b) can be reused because
already computed in other nodes (except for node 1 and 5,
where it is computed for the first time).



MOP (Meet Over Paths) Algorithm

* OUTPUT:
- MOP, () = U{f5(|l € pathe ()}
- MOP4(£) = L{f3(0|l € pathe ()}

—The analysis result is a combination (join) of the results (information) across all paths.

BUT

Generally, not computable in practice (undecidable) because there can be

infinite n° of paths in a program!



MFEFP vs MOP

Theorem. MFP algorithm always terminates and computes the least solution to the
instance of the monotone framework given as input.

Theorem. MOP is undecidable (for certain kind of monotone frameworks).

Theorem. For monotone frameworks,

MFPQ ;MOPQ andMFP, ;MOPQ

Y

MFP safe approximates MOP:
|

Except for quite simple formulations, for which they produce an identical result:

MFP results are less accurate (always greater than MOP results) but more practical.
e.g. If MOP returns the least (greatest) solution, MFP returns a slightly bigger (smaller) set.
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