
Data-Flow Analysis
Sergey Mechtaev

mechtaev@pku.edu.cn

Peking University

mailto:s.mechtaev@ucl.ac.uk

The While Language

• Simple language for studying analyses

• A While program is a statement (or a sequence of statements)

• Elementary blocks (assignments, tests and 𝑠𝑘𝑖𝑝 statements) are
labelled

Syntactic Categories

𝑎 ∈ 𝐴𝐸𝑥𝑝 – arithmetic expressions

𝑏 ∈ 𝐵𝐸𝑥𝑝 – boolean expressions

𝑆 ∈ Stmt – statements

𝑥, 𝑦 ∈ 𝑉𝑎𝑟 – variables

𝑛 ∈ 𝑁𝑢𝑚 – numerals

𝑙 ∈ 𝐿𝑎𝑏 – labels

𝑜𝑝𝑎 ∈ 𝑂𝑝𝑎 – arithmetic operators

𝑜𝑝𝑏 ∈ 𝑂𝑝𝑏 – boolean operators

𝑜𝑝𝑟 ∈ 𝑂𝑝𝑟 – relational operators

Syntax

𝑎 ∷= 𝑥 𝑛 𝑎1 𝑜𝑝𝑎 𝑎2

𝑏 ∷= 𝑡𝑟𝑢𝑒 𝑓𝑎𝑙𝑠𝑒 𝑛𝑜𝑡 𝑏 𝑏1 𝑜𝑝𝑏 𝑏2 𝑎1 𝑜𝑝𝑟 𝑎2

𝑆 ∷= 𝑥 ≔ 𝑎 𝑙 𝑠𝑘𝑖𝑝 𝑙 𝑆1; 𝑆2

𝑖𝑓 𝑏 𝑙 𝑡ℎ𝑒𝑛 𝑆1 𝑒𝑙𝑠𝑒 𝑆2 𝑤ℎ𝑖𝑙𝑒 𝑏 𝑙 𝑑𝑜 𝑆

𝑎 = Arithmetic expression

𝑏 = Boolean expression

𝑆 = Statement (program)

𝒍 → label allows to identify the primitive constructs of a program

… 𝒍 → elementary block

Example Program (Factorial)

𝑦 ≔ 𝑥 1;
𝑧 ≔ 1 2;

𝑤ℎ𝑖𝑙𝑒 𝑦 > 1 3 𝑑𝑜
 (𝑧 ≔ 𝑧 ∗ 𝑦 4;
 𝑦 ≔ 𝑦 − 1 5);
𝑦 ≔ 0 6

Data Flow Analysis

• Data flow analysis is a technique for gathering information about the
possible set of values calculated at various points in a computer
program.

• The program represented using control-flow graph (CFG)

• The information inferred from each node of CFG is described using
lattice.

𝑦 ≔ 𝑥 1;
𝑧 ≔ 1 2;

𝑤ℎ𝑖𝑙𝑒 𝑦 > 1 3 𝑑𝑜
 (𝑧 ≔ 𝑧 ∗ 𝑦 4;
 𝑦 ≔ 𝑦 − 1 5);
𝑦 ≔ 0 6

Control Flow Graph
[𝑦 ≔ 𝑥]1

𝑧 ≔ 1 2

𝑦 > 1 3 𝑦: = 0 6

𝑧 ≔ 𝑧 ∗ 𝑦 4

𝑦 ≔ 𝑦 − 1 5

no

yes

NODES = elementary blocks

EDGES = describe how control might pass from
 one elementary block to another

Initial Labels

The 𝑖𝑛𝑖𝑡 function returns the initial label of a statement:

𝑖𝑛𝑖𝑡 𝑥 ≔ 𝑎 𝑙 = 𝑙
𝑖𝑛𝑖𝑡 𝑠𝑘𝑖𝑝 𝑙 = 𝑙

𝑖𝑛𝑖𝑡 𝑆1; 𝑆2 = 𝑖𝑛𝑖𝑡 𝑆1

𝑖𝑛𝑖𝑡 𝑖𝑓 𝑏 𝑙 𝑡ℎ𝑒𝑛 𝑆1 𝑒𝑙𝑠𝑒 𝑆2 = 𝑙
𝑖𝑛𝑖𝑡 𝑤ℎ𝑖𝑙𝑒 𝑏 𝑙 𝑑𝑜 𝑆 = 𝑙

Final Labels

The 𝑓𝑖𝑛𝑎𝑙 function returns the set of final labels of a statement:

𝑓𝑖𝑛𝑎𝑙 𝑥 ≔ 𝑎 𝑙 = {𝑙}
𝑓𝑖𝑛𝑎𝑙 𝑠𝑘𝑖𝑝 𝑙 = {𝑙}

𝑓𝑖𝑛𝑎𝑙 𝑆1; 𝑆2 = 𝑓𝑖𝑛𝑎𝑙 𝑆2

𝑓𝑖𝑛𝑎𝑙 𝑖𝑓 𝑏 𝑙 𝑡ℎ𝑒𝑛 𝑆1 𝑒𝑙𝑠𝑒 𝑆2 = 𝑓𝑖𝑛𝑎𝑙 𝑆1 ∪ 𝑓𝑖𝑛𝑎𝑙(𝑆2)
𝑓𝑖𝑛𝑎𝑙 𝑤ℎ𝑖𝑙𝑒 𝑏 𝑙 𝑑𝑜 𝑆 = {𝑙}

Blocks

The 𝑏𝑙𝑜𝑐𝑘𝑠 function collects the elementary blocks associated with a
statements:

𝑏𝑙𝑜𝑐𝑘𝑠 𝑥 ≔ 𝑎 𝑙 = { 𝑥 ≔ 𝑎 𝑙}
𝑏𝑙𝑜𝑐𝑘𝑠 𝑠𝑘𝑖𝑝 𝑙 = { 𝑠𝑘𝑖𝑝 𝑙}

𝑏𝑙𝑜𝑐𝑘𝑠 𝑆1; 𝑆2 = 𝑏𝑙𝑜𝑐𝑘𝑠 𝑆1 ∪ 𝑏𝑙𝑜𝑐𝑘𝑠 𝑆2

𝑏𝑙𝑜𝑐𝑘𝑠 𝑖𝑓 𝑏 𝑙 𝑡ℎ𝑒𝑛 𝑆1 𝑒𝑙𝑠𝑒 𝑆2 = 𝑏 𝑙 ∪ 𝑏𝑙𝑜𝑐𝑘𝑠 𝑆1 ∪ 𝑏𝑙𝑜𝑐𝑘𝑠 𝑆2

𝑏𝑙𝑜𝑐𝑘𝑠 𝑤ℎ𝑖𝑙𝑒 𝑏 𝑙 𝑑𝑜 𝑆 = 𝑏 𝑙 ∪ 𝑏𝑙𝑜𝑐𝑘𝑠 𝑆

Flow

The 𝑓𝑙𝑜𝑤 function extracts edges of the flow graph as pairs 𝑙, 𝑙′ :

𝑓𝑙𝑜𝑤 𝑥 ≔ 𝑎 𝑙 = ∅
𝑓𝑙𝑜𝑤 𝑠𝑘𝑖𝑝 𝑙 = ∅

𝑓𝑙𝑜𝑤 𝑆1; 𝑆2 = 𝑓𝑙𝑜𝑤 𝑆1 ∪ 𝑓𝑙𝑜𝑤 𝑆2 ∪ 𝑙, 𝑖𝑛𝑖𝑡 𝑆2 𝑙 ∈ 𝑓𝑖𝑛𝑎𝑙(𝑆1)}
𝑖𝑛𝑖𝑡 𝑖𝑓 𝑏 𝑙 𝑡ℎ𝑒𝑛 𝑆1 𝑒𝑙𝑠𝑒 𝑆2 = 𝑓𝑙𝑜𝑤 𝑆1 ∪ 𝑓𝑙𝑜𝑤 𝑆2

 ∪ { 𝑙, 𝑖𝑛𝑖𝑡 𝑆1 , 𝑙, 𝑖𝑛𝑖𝑡 𝑆2 }
𝑖𝑛𝑖𝑡 𝑤ℎ𝑖𝑙𝑒 𝑏 𝑙 𝑑𝑜 𝑆 = 𝑓𝑙𝑜𝑤(𝑆) ∪ { 𝑙, 𝑖𝑛𝑖𝑡 𝑆

 ∪ 𝑙′, 𝑙 𝑙′ ∈ 𝑓𝑖𝑛𝑎𝑙(𝑆)}

Reverse Flow

Edges of the flow graph for backward analysis:

𝑓𝑙𝑜𝑤𝑅 𝑆 = 𝑙′, 𝑙 𝑙, 𝑙′ ∈ 𝑓𝑙𝑜𝑤(𝑆)}

Example (The Power Program)

𝑖𝑛𝑖𝑡 𝑃𝑜𝑤𝑒𝑟 = 1
𝑓𝑖𝑛𝑎𝑙 𝑃𝑜𝑤𝑒𝑟 = 2

𝑙𝑎𝑏𝑒𝑙𝑠 𝑃𝑜𝑤𝑒𝑟 = 1,2,3,4
𝑓𝑙𝑜𝑤 𝑃𝑜𝑤𝑒𝑟
= { 1,2 , 2,3 , 3,4 , (4,2)}

𝑧 ≔ 1 1

𝑥 > 0 2

𝑧 ≔ 𝑧 ∗ 𝑦 3

𝑥 ≔ 𝑥 − 1 4

true

false

Classification of Analyses

• Intraprocedural vs interprocedural

• Flow-sensitive vs flow-insensitive

• Context-insensitive vs context-sensitive

• Must vs may

• Forward vs backward

Intraprocedural vs Interprocedural

• Intraprocedural analysis is a mechanism for performing analysis for
each function, using only the information available for that.

• Interprocedural analysis is a mechanism for performing analysis
across function boundaries.

Flow-sensitive vs flow-insensitive

• Flow-sensitive analyses is an analysis whose results depends on the
order of statements (requires a model of program state at each
program point).

• Flow-insensitive is an analysis whose result is the same regardless of
the statement order (requires only a single global state).

Context-insensitive vs context-sensitive

• A context-insensitive analysis is an interprocedural analysis that
cannot distinguish between different calls of a procedure (the analysis
information is combined for all call sites)

• A context-sensitive analysis is an interprocedural analysis that takes
the context of procedure calls into account (more precise, but also
more costly).

Must vs may

• Must analysis detect properties that are satisfied by all paths of
execution.

• May analysis detect properties that are satisfied by at least one
execution path.

Forward vs Backward

• Forward analysis propagates information from the beginning to the
end of the program

• Backward analysis propagates information from the end to the
beginning of the program.

Four Classic Analyses

Forward Backward

Must Available Expressions Very Busy Expressions

May Reaching Definitions Live Variables

Four Classic Analyses

Forward Backward

Must Available Expressions Very Busy Expressions

May Reaching Definitions Live Variables

Available Expressions

Definition. For each program point, which expressions must have
already been computed, and not later modified, on all paths to the
program point.

It is a forward must analysis.

Application: optimization (don't recompute expressions that are still
available).

Example

𝑥 ≔ 𝑎 + 𝑏 1;
𝑦 ≔ 𝑎 ∗ 𝑏 2;

𝑤ℎ𝑖𝑙𝑒 𝑦 > 𝑎 + 𝑏 3𝑑𝑜
 𝑎 ≔ 𝑎 + 1 4;
 𝑥 ≔ 𝑎 + 𝑏 5;

The expression 𝑎 + 𝑏 is available
every time execution reaches the
condition 3, therefore the
expression need not be
recomputed.

Killed Expression

An expression is killed in a block if any of the variables used in the
expression are modified in the block:

𝑘𝑖𝑙𝑙𝐴𝐸 𝑥 ≔ 𝑎 𝑙 = 𝑎′ ∈ 𝐴𝐸𝑥𝑝∗ 𝑥 ∈ 𝑉𝑎𝑟𝑠(𝑎′)}
𝑘𝑖𝑙𝑙𝐴𝐸 𝑠𝑘𝑖𝑝 𝑙 = ∅

𝑘𝑖𝑙𝑙𝐴𝐸 𝑏 𝑙 = ∅

where 𝐴𝐸𝑥𝑝∗ are all expressions in the program

Killed Expression

An expression is killed in a block if any of the variables used in the
expression are modified in the block:

𝑘𝑖𝑙𝑙𝐴𝐸 𝑥 ≔ 𝑎 𝑙 = 𝑎′ ∈ 𝐴𝐸𝑥𝑝∗ 𝑥 ∈ 𝑉𝑎𝑟𝑠(𝑎′)}
𝑘𝑖𝑙𝑙𝐴𝐸 𝑠𝑘𝑖𝑝 𝑙 = ∅

𝑘𝑖𝑙𝑙𝐴𝐸 𝑏 𝑙 = ∅

where 𝐴𝐸𝑥𝑝∗ are all expressions in the program

Assignment statement:
kills all expressions that
use variable 𝑥 assigned
in the block because
they have to be
recomputed again

Generated Expression

A generated expression is an expression that is evaluated in the block
and where none of the variables used in the expression are later
modified in the block:

𝑔𝑒𝑛𝐴𝐸 𝑥 ≔ 𝑎 𝑙 = 𝑎′ ∈ 𝐴𝐸𝑥𝑝 𝑎 𝑥 ∉ 𝑉𝑎𝑟𝑠(𝑎′)}
𝑔𝑒𝑡𝐴𝐸 𝑠𝑘𝑖𝑝 𝑙 = ∅

𝑔𝑒𝑛𝐴𝐸 𝑏 𝑙 = 𝐴𝐸𝑥𝑝(𝑏)

Analysis

The goal of the analysis is to compute the largest set satisfying the
equation for 𝐴𝐸𝑒𝑛𝑡𝑟𝑦:

𝐴𝐸𝑒𝑛𝑡𝑟𝑦 𝑙 = ቊ
∅ 𝑖𝑓 𝑙 = 𝑖𝑛𝑖𝑡(𝑝𝑟𝑜𝑔𝑟𝑎𝑚)

∩ 𝐴𝐸𝑒𝑥𝑖𝑡 𝑙′ 𝑙′, 𝑙 ∈ 𝑓𝑙𝑜𝑤(𝑝𝑟𝑜𝑔𝑟𝑎𝑚)} 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

𝐴𝐸𝑒𝑥𝑖𝑡 𝑙 = 𝐴𝐸𝑒𝑛𝑡𝑟𝑦 𝑙 ∖ 𝑘𝑖𝑙𝑙 𝐵𝑙 ∪ 𝑔𝑒𝑛𝐴𝐸 𝐵𝑙

where 𝐵𝑙 ∈ 𝑏𝑙𝑜𝑐𝑘𝑠(𝑝𝑟𝑜𝑔𝑟𝑎𝑚)

Example

𝑥 ≔ 𝑎 + 𝑏 1;
𝑦 ≔ 𝑎 ∗ 𝑏 2;

𝑤ℎ𝑖𝑙𝑒 𝑦 > 𝑎 + 𝑏 3 𝑑𝑜
 𝑎 ≔ 𝑎 + 1 4;
 𝑥 ≔ 𝑎 + 𝑏 5;

𝒍 𝒌𝒊𝒍𝒍𝑨𝑬(𝒍) 𝒈𝒆𝒏𝑨𝑬(𝒍)

1 ∅ {𝑎 + 𝑏}

2 ∅ {𝑎 ∗ 𝑏}

3 ∅ {𝑎 + 𝑏}

4 {𝑎 + 𝑏, 𝑎 ∗ 𝑏, 𝑎 + 1} ∅

5 ∅ {𝑎 + 𝑏}

Example

𝐴𝐸𝑒𝑛𝑡𝑟𝑦 1 = ∅
𝐴𝐸𝑒𝑛𝑡𝑟𝑦(2) = 𝐴𝐸𝑒𝑥𝑖𝑡 1
𝐴𝐸𝑒𝑛𝑡𝑟𝑦 3 = 𝐴𝐸𝑒𝑥𝑖𝑡 2 ∩ 𝐴𝐸𝑒𝑥𝑖𝑡 5
𝐴𝐸𝑒𝑛𝑡𝑟𝑦(4) = 𝐴𝐸𝑒𝑥𝑖𝑡 3
𝐴𝐸𝑒𝑛𝑡𝑟𝑦(5) = 𝐴𝐸𝑒𝑥𝑖𝑡 4

𝐴𝐸𝑒𝑥𝑖𝑡 1 = 𝐴𝐸𝑒𝑛𝑡𝑟𝑦 1 ∪ {𝑎 + 𝑏}
𝐴𝐸𝑒𝑥𝑖𝑡 2 = 𝐴𝐸𝑒𝑛𝑡𝑟𝑦 2 ∪ {𝑎 ∗ 𝑏}
𝐴𝐸𝑒𝑥𝑖𝑡 3 = 𝐴𝐸𝑒𝑛𝑡𝑟𝑦 3 ∪ {𝑎 + 𝑏}
𝐴𝐸𝑒𝑥𝑖𝑡(4)
= 𝐴𝐸𝑒𝑛𝑡𝑟𝑦 4 ∖ {𝑎 + 𝑏, 𝑎 ∗ 𝑏, 𝑎 + 1}
𝐴𝐸𝑒𝑥𝑖𝑡 5 = 𝐴𝐸𝑒𝑛𝑡𝑟𝑦 5 ∪ {𝑎 + 𝑏}

Example

𝐴𝐸𝑒𝑛𝑡𝑟𝑦 1 = ∅
𝐴𝐸𝑒𝑛𝑡𝑟𝑦(2) = 𝐴𝐸𝑒𝑥𝑖𝑡 1
𝐴𝐸𝑒𝑛𝑡𝑟𝑦 3 = 𝐴𝐸𝑒𝑥𝑖𝑡 2 ∩ 𝐴𝐸𝑒𝑥𝑖𝑡 5
𝐴𝐸𝑒𝑛𝑡𝑟𝑦(4) = 𝐴𝐸𝑒𝑥𝑖𝑡 3
𝐴𝐸𝑒𝑛𝑡𝑟𝑦(5) = 𝐴𝐸𝑒𝑥𝑖𝑡 4

AE at the entry of Block 3 = AE available at the exit of Block 2 (when entering the loop for the first time)
and of Block 5 (when coming back from the exit of the loop)

𝐴𝐸𝑒𝑥𝑖𝑡 1 = 𝐴𝐸𝑒𝑛𝑡𝑟𝑦 1 ∪ {𝑎 + 𝑏}
𝐴𝐸𝑒𝑥𝑖𝑡 2 = 𝐴𝐸𝑒𝑛𝑡𝑟𝑦 2 ∪ {𝑎 ∗ 𝑏}
𝐴𝐸𝑒𝑥𝑖𝑡 3 = 𝐴𝐸𝑒𝑛𝑡𝑟𝑦 3 ∪ {𝑎 + 𝑏}
𝐴𝐸𝑒𝑥𝑖𝑡(4) = 𝐴𝐸𝑒𝑛𝑡𝑟𝑦 4 ∖ {𝑎 + 𝑏, 𝑎 ∗ 𝑏, 𝑎 + 1}
𝐴𝐸𝑒𝑥𝑖𝑡 5 = 𝐴𝐸𝑒𝑛𝑡𝑟𝑦 5 ∪ {𝑎 + 𝑏}

Equations for entry and exit functions:

Example

𝑥 ≔ 𝑎 + 𝑏 1;
𝑦 ≔ 𝑎 ∗ 𝑏 2;

𝑤ℎ𝑖𝑙𝑒 𝑦 > 𝑎 + 𝑏 3 𝑑𝑜
 𝑎 ≔ 𝑎 + 1 4;
 𝑥 ≔ 𝑎 + 𝑏 5;

𝒍 𝑨𝑬𝒆𝒏𝒕𝒓𝒚(𝒍) 𝑨𝑬𝒆𝒙𝒊𝒕(𝒍)

1 ∅ {𝑎 + 𝑏}

2 {𝑎 + 𝑏} {𝑎 + 𝑏, 𝑎 ∗ 𝑏}

3 {𝑎 + 𝑏} {𝑎 + 𝑏}

4 {𝑎 + 𝑏} ∅

5 ∅ {𝑎 + 𝑏}

Four Classic Analyses

Forward Backward

Must Available Expressions Very Busy Expressions

May Reaching Definitions Live Variables

Reaching Definitions

Reaching definitions analysis determines for each program point,
which assignments may have been made and not overwritten, when
program execution reaches this point along some path.

It is forward may analysis.

Applications: Bug-finding (uninitialized variables), optimization
(constant propagation)

Example

𝑥 ≔ 5 1;
𝑦 ≔ 1 2;

𝑤ℎ𝑖𝑙𝑒 𝑥 > 1 3 𝑑𝑜
 𝑦 ≔ 𝑥 ∗ 𝑦 4;
 𝑥 ≔ 𝑥 − 1 5;

All assignments reach the entry of
4; only the assignments 1,4,5
reach the entry of 5.

because the assignment 2 is
overwritten by the assignment 4

Killed Assignments

An assignment is killed by a block if the block assigns a new value to the variable:

𝑘𝑖𝑙𝑙𝑅𝐷 ∶

𝐵𝑙𝑜𝑐𝑘𝑠∗ → 𝑃(𝑉𝑎𝑟∗ × 𝐿𝑎𝑏∗)

Set of pairs of variables and labels corresponding to
the place where the variables are assigned

Killed Assignments

An assignment is killed by a block if the block assigns a new value to
the variable:

𝑘𝑖𝑙𝑙𝑅𝐷 𝑥 ≔ 𝑎 𝑙 = (𝑥, ?) ∪ 𝑥, 𝑙′ 𝐵𝑙′
𝑖𝑠 𝑎𝑛 𝑎𝑠𝑠𝑖𝑔𝑛𝑚𝑒𝑛𝑡 𝑡𝑜 𝑥}

𝑘𝑖𝑙𝑙𝑅𝐷 𝑠𝑘𝑖𝑝 𝑙 = ∅
𝑘𝑖𝑙𝑙𝑅𝐷 𝑏 𝑙 = ∅

where ? is the label for uninitialised variables.

Generated Assignments

Assignments that appear in the block:

𝑔𝑒𝑛𝑅𝐷 𝑥 ≔ 𝑎 𝑙 = {(𝑥, 𝑙)}
𝑔𝑒𝑛𝑅𝐷 𝑠𝑘𝑖𝑝 𝑙 = ∅

𝑔𝑒𝑛𝑅𝐷 𝑏 𝑙 = ∅

Analysis

The goal of the analysis is to compute the smallest set satisfying the equation
for 𝑅𝐷𝑒𝑛𝑡𝑟𝑦:

𝑅𝐷𝑒𝑛𝑡𝑟𝑦 𝑙 = ቊ
𝑥, ? 𝑥 ∈ 𝑉𝑎𝑟𝑠} 𝑖𝑓 𝑙 = 𝑖𝑛𝑖𝑡(𝑝𝑟𝑜𝑔𝑟𝑎𝑚)

∪ 𝑅𝐷𝑒𝑥𝑖𝑡 𝑙′ 𝑙′, 𝑙 ∈ 𝑓𝑙𝑜𝑤 (𝑝𝑟𝑜𝑔𝑟𝑎𝑚)} 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

𝑅𝐷𝑒𝑥𝑖𝑡 𝑙 = 𝑅𝐷𝑒𝑛𝑡𝑟𝑦 𝑙 ∖ 𝑘𝑖𝑙𝑙𝑅𝐷 𝐵𝑙 ∪ 𝑔𝑒𝑛𝑅𝐷 𝐵𝑙

where 𝐵𝑙 ∈ 𝑏𝑙𝑜𝑐𝑘𝑠(𝑝𝑟𝑜𝑔𝑟𝑎𝑚)

Example

𝑥 ≔ 5 1;
𝑦 ≔ 1 2;

𝑤ℎ𝑖𝑙𝑒 𝑥 > 1 3 𝑑𝑜
 𝑦 ≔ 𝑥 ∗ 𝑦 4;
 𝑥 ≔ 𝑥 − 1 5;

𝒍 𝒌𝒊𝒍𝒍𝑹𝑫(𝒍) 𝒈𝒆𝒏𝑹𝑫(𝒍)

1 { 𝑥, ? , 𝑥, 1 , (𝑥, 5)} {(𝑥, 1)}

2 { 𝑦, ? , 𝑦, 2 , (𝑦, 4)} {(𝑦, 2)}

3 ∅ ∅

4 { 𝑦, ? , 𝑦, 2 , (𝑦, 4)} {(𝑦, 4)}

5 { 𝑥, ? , 𝑥, 1 , (𝑥, 5)} {(𝑥, 5)}

Example

𝑅𝐷𝑒𝑛𝑡𝑟𝑦 1 = { 𝑥, ? , (𝑦, ?)}
𝑅𝐷𝑒𝑛𝑡𝑟𝑦(2) = 𝑅𝐷𝑒𝑥𝑖𝑡 1
𝑅𝐷𝑒𝑛𝑡𝑟𝑦 3 = 𝑅𝐷𝑒𝑥𝑖𝑡 2 ∪ 𝑅𝐷𝑒𝑥𝑖𝑡(5)
𝑅𝐷𝑒𝑛𝑡𝑟𝑦 4 = 𝑅𝐷𝑒𝑥𝑖𝑡 3
𝑅𝐷𝑒𝑛𝑡𝑟𝑦(5) = 𝑅𝐷𝑒𝑥𝑖𝑡 4

𝑅𝐷𝑒𝑥𝑖𝑡 1 = 𝑅𝐷𝑒𝑛𝑡𝑟𝑦 1 ∖ { 𝑥, ? , 𝑥, 1 , (𝑥, 5)} ∪ {(𝑥, 1)}
𝑅𝐷𝑒𝑥𝑖𝑡 2 = 𝑅𝐷𝑒𝑛𝑡𝑟𝑦 2 ∖ { 𝑦, ? , 𝑦, 2 , (𝑦, 4)} ∪ {(𝑦, 2)}
𝑅𝐷𝑒𝑥𝑖𝑡 3 = 𝑅𝐷𝑒𝑛𝑡𝑟𝑦 3
𝑅𝐷𝑒𝑥𝑖𝑡 4 = 𝑅𝐷𝑒𝑛𝑡𝑟𝑦 4 ∖ { 𝑦, ? , 𝑦, 2 , (𝑦, 4)} ∪ {(𝑦, 4)}
𝑅𝐷𝑒𝑥𝑖𝑡 5 = 𝑅𝐷𝑒𝑛𝑡𝑟𝑦 5 ∖ { 𝑥, ? , 𝑥, 1 , (𝑥, 5)} ∪ {(𝑥, 5)}

Example

𝑥 ≔ 5 1;
𝑦 ≔ 1 2;

𝑤ℎ𝑖𝑙𝑒 𝑥 > 1 3 𝑑𝑜
 𝑦 ≔ 𝑥 ∗ 𝑦 4;
 𝑥 ≔ 𝑥 − 1 5;

𝒍 𝑹𝑫𝒆𝒏𝒕𝒓𝒚 (𝒍) 𝑹𝑫𝒆𝒙𝒊𝒕 (𝒍)

1 { 𝑥, ? , (𝑦, ?)} { 𝑦, ? , (𝑥, 1)}

2 { 𝑦, ? , (𝑥, 1)} { 𝑥, 1 , (𝑦, 2)}

3 { 𝑥, 1 , 𝑦, 2 , 𝑦, 4 , (𝑥, 5)} { 𝑥, 1 , 𝑦, 2 , 𝑦, 4 , (𝑥, 5)}

4 { 𝑥, 1 , 𝑦, 2 , 𝑦, 4 , (𝑥, 5)} { 𝑥, 1 , 𝑦, 4 , (𝑥, 5)}

5 { 𝑥, 1 , 𝑦, 4 , (𝑥, 5)} { 𝑦, 4 , (𝑥, 5)}

Four Classic Analyses

Forward Backward

Must Available Expressions Very Busy Expressions

May Reaching Definitions Live Variables

Very Busy Expressions

An expression is very busy at the exit from a label if, no matter what path is
taken from the label, the expression must always be used before any of the
variables occurring in it are redefined.

Very busy expressions analysis determines for each program point, which
expressions must be busy at the exit from the point.

It is backward must analysis.

Applications: Optimization (evaluate the expression in the block and store its
value for later use, aka hoisting the expression)

Example

𝑖𝑓 𝑎 > 𝑏 1 𝑡ℎ𝑒𝑛
 𝑥 ≔ 𝑏 − 𝑎 2;
 𝑦 ≔ 𝑎 − 𝑏 3;
𝑒𝑙𝑠𝑒
 𝑦 ≔ 𝑏 − 𝑎 4;
 𝑥 ≔ 𝑎 − 𝑏 5;

𝑎 − 𝑏 and 𝑏 − 𝑎 are both very
busy at the start of the
conditional, can be hoisted to
reduce the size of generated code.

Killed Expressions

An expression is killed in a block if any of the variables used in the
expression are modified in the block:

𝑘𝑖𝑙𝑙𝑉𝐵:

𝐵𝑙𝑜𝑐𝑘𝑠∗ → 𝑃(𝐴𝐸𝑥𝑝∗)

𝑘𝑖𝑙𝑙𝑉𝐵 𝑥 ≔ 𝑎 𝑙 = 𝑎′ ∈ 𝐴𝐸𝑥𝑝∗ 𝑥 ∈ 𝑉𝑎𝑟𝑠(𝑎′)}
𝑘𝑖𝑙𝑙𝑉𝐵 𝑠𝑘𝑖𝑝 𝑙 = ∅

𝑘𝑖𝑙𝑙𝑉𝐵 𝑏 𝑙 = ∅

where 𝐴𝐸𝑥𝑝∗ are all expressions in the program.

Killed Expressions

An expression is killed in a block if any of the variables used in the
expression are modified in the block:

𝑘𝑖𝑙𝑙𝑉𝐵:

𝐵𝑙𝑜𝑐𝑘𝑠∗ → 𝑃(𝐴𝐸𝑥𝑝∗)

𝑘𝑖𝑙𝑙𝑉𝐵 𝑥 ≔ 𝑎 𝑙 = 𝑎′ ∈ 𝐴𝐸𝑥𝑝∗ 𝑥 ∈ 𝑉𝑎𝑟𝑠(𝑎′)}
𝑘𝑖𝑙𝑙𝑉𝐵 𝑠𝑘𝑖𝑝 𝑙 = ∅

𝑘𝑖𝑙𝑙𝑉𝐵 𝑏 𝑙 = ∅

where 𝐴𝐸𝑥𝑝∗ are all expressions in the program.

For assignment statements: all the
variables that hold expressions using
the variables that has been assigned
need to be killed

Generated Expressions

A very busy expression is generated:

𝑔𝑒𝑛𝑉𝐵 ∶
𝐵𝑙𝑜𝑐𝑘𝑠∗ → 𝑃(𝐴𝐸𝑥𝑝∗)

𝑔𝑒𝑛𝑉𝐵 𝑥 ≔ 𝑎 𝑙 = 𝐴𝐸𝑥𝑝(𝑎)
𝑔𝑒𝑛𝑉𝐵 𝑠𝑘𝑖𝑝 𝑙 = ∅

𝑔𝑒𝑛𝑉𝐵 𝑏 𝑙 = 𝐴𝐸𝑥𝑝(𝑏)

if it appears on the right-hand side of an assignment or inside an if or loop condition.

Analysis

The goal of the analysis is to compute the largest set satisfying the equation
for 𝑉𝐵𝑒𝑥𝑖𝑡:

𝑉𝐵𝑒𝑥𝑖𝑡 𝑙 = ൝
∅ 𝑖𝑓 𝑙 = 𝑖𝑛𝑖𝑡(𝑝𝑟𝑜𝑔𝑟𝑎𝑚)

∩ 𝑉𝐵𝑒𝑛𝑡𝑟𝑦 𝑙′ 𝑙′, 𝑙 ∈ 𝑓𝑙𝑜𝑤𝑅 (𝑝𝑟𝑜𝑔𝑟𝑎𝑚)} 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

𝑉𝐵𝑒𝑛𝑡𝑟𝑦 𝑙 = 𝑉𝐵𝑒𝑥𝑖𝑡 𝑙 ∖ 𝑘𝑖𝑙𝑙𝑉𝐵 𝐵𝑙 ∪ 𝑔𝑒𝑛𝑉𝐵 𝐵𝑙

where 𝐵𝑙 ∈ 𝑏𝑙𝑜𝑐𝑘𝑠(𝑝𝑟𝑜𝑔𝑟𝑎𝑚)

Example

𝑖𝑓 𝑎 > 𝑏 1 𝑡ℎ𝑒𝑛
 𝑥 ≔ 𝑏 − 𝑎 2;
 𝑦 ≔ 𝑎 − 𝑏 3;
𝑒𝑙𝑠𝑒
 𝑦 ≔ 𝑏 − 𝑎 4;
 𝑥 ≔ 𝑎 − 𝑏 5;

𝒍 𝒌𝒊𝒍𝒍𝑹𝑫(𝒍) 𝒈𝒆𝒏𝑹𝑫(𝒍)

1 ∅ ∅

2 ∅ {𝑏 − 𝑎}

3 ∅ {𝑎 − 𝑏}

4 ∅ {𝑏 − 𝑎}

5 ∅ {𝑎 − 𝑏}

Example

𝑉𝐵𝑒𝑛𝑡𝑟𝑦 1 = 𝑉𝐵𝑒𝑥𝑖𝑡 1
𝑉𝐵𝑒𝑛𝑡𝑟𝑦 2 = 𝑉𝐵𝑒𝑥𝑖𝑡 2 ∪ {𝑏 − 𝑎}
𝑉𝐵𝑒𝑛𝑡𝑟𝑦 3 = {𝑎 − 𝑏}
𝑉𝐵𝑒𝑛𝑡𝑟𝑦 4 = 𝑉𝐵𝑒𝑥𝑖𝑡 4 ∪ {𝑏 − 𝑎}
𝑉𝐵𝑒𝑛𝑡𝑟𝑦 5 = {𝑎 − 𝑏}

𝑉𝐵𝑒𝑥𝑖𝑡 1 = 𝑉𝐵𝑒𝑛𝑡𝑟𝑦 2 ∩ 𝑉𝐵𝑒𝑛𝑡𝑟𝑦(4)
𝑉𝐵𝑒𝑥𝑖𝑡 2 = 𝑉𝐵𝑒𝑛𝑡𝑟𝑦(3)
𝑉𝐵𝑒𝑥𝑖𝑡 3 = ∅
𝑉𝐵𝑒𝑥𝑖𝑡 4 = 𝑉𝐵𝑒𝑛𝑡𝑟𝑦(5)
𝑉𝐵𝑒𝑥𝑖𝑡 5 = ∅

Example

𝑖𝑓 𝑎 > 𝑏 1 𝑡ℎ𝑒𝑛
 𝑥 ≔ 𝑏 − 𝑎 2;
 𝑦 ≔ 𝑎 − 𝑏 3;
𝑒𝑙𝑠𝑒
 𝑦 ≔ 𝑏 − 𝑎 4;
 𝑥 ≔ 𝑎 − 𝑏 5;

𝒍 𝑽𝑩𝒆𝒏𝒕𝒓𝒚 (𝒍) 𝑽𝑩𝒆𝒙𝒊𝒕 (𝒍)

1 {𝑎 − 𝑏, 𝑏 − 𝑎} {𝑎 − 𝑏, 𝑏 − 𝑎}

2 {𝑎 − 𝑏, 𝑏 − 𝑎} {𝑎 − 𝑏}

3 {𝑎 − 𝑏} ∅

4 {𝑎 − 𝑏, 𝑏 − 𝑎} {𝑎 − 𝑏}

5 {𝑎 − 𝑏} ∅

Four Classic Analyses

Forward Backward

Must Available Expressions Very Busy Expressions

May Reaching Definitions Live Variables

Live Variables

A variable is live at the exit from a label if there exists a path from the
label to a use of the variable that does not re-define the variable.

Live variables analysis determines for each program point, which
variables may be live at the exit from the point.

It is backward may analysis.

Applications: Optimization (don't store variables that aren't live,
eliminate assignments where variables are dead)

Example

𝑥 ≔ 2 1;
𝑦 ≔ 4 2;
𝑥 ≔ 1 3;

𝑖𝑓 𝑦 > 𝑥 4 𝑡ℎ𝑒𝑛
 𝑧 ≔ 𝑦 5;
𝑒𝑙𝑠𝑒
 𝑧 ≔ 𝑦 ∗ 𝑦 6;
𝑥 ≔ 𝑧 7

The variable x is not live at the exit
from label 1 (the assignment is
redundant).

Both x and y are live at the exit
from label 3.

Killed Variables

A variable is killed by an assignment if it appears on the left hand side
of it:

𝑘𝑖𝑙𝑙𝐿𝑉:

𝐵𝑙𝑜𝑐𝑘𝑠∗ → 𝑃(𝑉𝑎𝑟∗)

𝑘𝑖𝑙𝑙𝐿𝑉 𝑥 ≔ 𝑎 𝑙 = 𝑥
𝑘𝑖𝑙𝑙𝐿𝑉 𝑠𝑘𝑖𝑝 𝑙 = ∅

𝑘𝑖𝑙𝑙𝐿𝑉 𝑏 𝑙 = ∅

Generated Variables

A variable is generated in the block:

𝑔𝑒𝑛𝐿𝑉 ∶
𝐵𝑙𝑜𝑐𝑘𝑠∗ → 𝑃(𝑉𝑎𝑟∗)

𝑔𝑒𝑛𝐿𝑉 𝑥 ≔ 𝑎 𝑙 = 𝑉𝑎𝑟𝑠(𝑎)
𝑔𝑒𝑛𝐿𝑉 𝑠𝑘𝑖𝑝 𝑙 = ∅

𝑔𝑒𝑛𝐿𝑉 𝑏 𝑙 = 𝑉𝑎𝑟𝑠(𝑏)

if it appears on the right-hand side of an assignment or in some condition.

Analysis

The goal of the analysis is to compute the smallest set satisfying the
equation for 𝐿𝑉𝑒𝑥𝑖𝑡:

𝐿𝑉𝑒𝑥𝑖𝑡 𝑙 = ൝
∅ 𝑖𝑓 𝑙 = 𝑓𝑖𝑛𝑎𝑙(𝑝𝑟𝑜𝑔𝑟𝑎𝑚)

∪ 𝐿𝑉𝑒𝑛𝑡𝑟𝑦 𝑙′ 𝑙′, 𝑙 ∈ 𝑓𝑙𝑜𝑤𝑅(𝑝𝑟𝑜𝑔𝑟𝑎𝑚)} 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

𝐿𝑉𝑒𝑛𝑡𝑟𝑦 𝑙 = 𝐿𝑉𝑒𝑥𝑖𝑡 𝑙 ∖ 𝑘𝑖𝑙𝑙 𝐵𝑙 ∪ 𝑔𝑒𝑛𝐿𝑉 𝐵𝑙

where 𝐵𝑙 ∈ 𝑏𝑙𝑜𝑐𝑘𝑠(𝑝𝑟𝑜𝑔𝑟𝑎𝑚)

Example

𝑥 ≔ 2 1;
𝑦 ≔ 4 2;
𝑥 ≔ 1 3;

𝑖𝑓 𝑦 > 𝑥 4 𝑡ℎ𝑒𝑛
 𝑧 ≔ 𝑦 5;
𝑒𝑙𝑠𝑒
 𝑧 ≔ 𝑦 ∗ 𝑦 6;
𝑥 ≔ 𝑧 7

𝒍 𝒌𝒊𝒍𝒍𝑨𝑬(𝒍) 𝒈𝒆𝒏𝑨𝑬(𝒍)

1 {𝑥} ∅

2 {𝑦} ∅

3 {𝑥} ∅

4 ∅ {𝑥, 𝑦}

5 {𝑧} {𝑦}

6 {𝑧} {𝑦}

7 {𝑥} {𝑧}

Example

𝐿𝑉𝑒𝑛𝑡𝑟𝑦 1 = 𝐿𝑉𝑒𝑥𝑖𝑡(1) ∖ {x}
𝐿𝑉𝑒𝑛𝑡𝑟𝑦(2) = 𝐿𝑉𝑒𝑥𝑖𝑡 2 ∖ {y}
𝐿𝑉𝑒𝑛𝑡𝑟𝑦 3 = 𝐿𝑉𝑒𝑥𝑖𝑡 3 ∖ {x}
𝐿𝑉𝑒𝑛𝑡𝑟𝑦 4 = 𝐿𝑉𝑒𝑥𝑖𝑡 4 ∪ {𝑥, 𝑦}
𝐿𝑉𝑒𝑛𝑡𝑟𝑦(5) = (𝐿𝑉𝑒𝑥𝑖𝑡 5 ∖ {z}) ∪ {𝑦}
𝐿𝑉𝑒𝑛𝑡𝑟𝑦 6 = (𝐿𝑉𝑒𝑥𝑖𝑡(6) ∖ {z}) ∪ {𝑦}
𝐿𝑉𝑒𝑛𝑡𝑟𝑦 7 = {𝑧}

𝐿𝑉𝑒𝑥𝑖𝑡 1 = 𝐿𝑉𝑒𝑛𝑡𝑟𝑦 2
𝐿𝑉𝑒𝑥𝑖𝑡 2 = 𝐿𝑉𝑒𝑛𝑡𝑟𝑦 3
𝐿𝑉𝑒𝑥𝑖𝑡 3 = 𝐿𝑉𝑒𝑛𝑡𝑟𝑦 4
𝐿𝑉𝑒𝑥𝑖𝑡 4 = 𝐿𝑉𝑒𝑛𝑡𝑟𝑦 5 ∪ 𝐿𝑉𝑒𝑛𝑡𝑟𝑦(6)
𝐿𝑉𝑒𝑥𝑖𝑡 5 = 𝐿𝑉𝑒𝑛𝑡𝑟𝑦 7
𝐿𝑉𝑒𝑥𝑖𝑡 6 = 𝐿𝑉𝑒𝑛𝑡𝑟𝑦 4
𝐿𝑉𝑒𝑥𝑖𝑡 7 = ∅

Example

𝐿𝑉𝑒𝑛𝑡𝑟𝑦 1 = 𝐿𝑉𝑒𝑥𝑖𝑡(1) ∖ {x}
𝐿𝑉𝑒𝑛𝑡𝑟𝑦(2) = 𝐿𝑉𝑒𝑥𝑖𝑡 2 ∖ {y}
𝐿𝑉𝑒𝑛𝑡𝑟𝑦 3 = 𝐿𝑉𝑒𝑥𝑖𝑡 3 ∖ {x}
𝐿𝑉𝑒𝑛𝑡𝑟𝑦 4 = 𝐿𝑉𝑒𝑥𝑖𝑡 4 ∪ {𝑥, 𝑦}
𝐿𝑉𝑒𝑛𝑡𝑟𝑦(5) = (𝐿𝑉𝑒𝑥𝑖𝑡 5 ∖ {z}) ∪ {𝑦}
𝐿𝑉𝑒𝑛𝑡𝑟𝑦 6 = (𝐿𝑉𝑒𝑥𝑖𝑡(6) ∖ {z}) ∪ {𝑦}
𝐿𝑉𝑒𝑛𝑡𝑟𝑦 7 = {𝑧}

𝐿𝑉𝑒𝑥𝑖𝑡 1 = 𝐿𝑉𝑒𝑛𝑡𝑟𝑦 2
𝐿𝑉𝑒𝑥𝑖𝑡 2 = 𝐿𝑉𝑒𝑛𝑡𝑟𝑦 3
𝐿𝑉𝑒𝑥𝑖𝑡 3 = 𝐿𝑉𝑒𝑛𝑡𝑟𝑦 4
𝐿𝑉𝑒𝑥𝑖𝑡 4 = 𝐿𝑉𝑒𝑛𝑡𝑟𝑦 5 ∪ 𝐿𝑉𝑒𝑛𝑡𝑟𝑦(6)
𝐿𝑉𝑒𝑥𝑖𝑡 5 = 𝐿𝑉𝑒𝑛𝑡𝑟𝑦 7
𝐿𝑉𝑒𝑥𝑖𝑡 6 = 𝐿𝑉𝑒𝑛𝑡𝑟𝑦 4
𝐿𝑉𝑒𝑥𝑖𝑡 7 = ∅

Live variables at exit of Block 4 = union of live variables at entry of Block 5 and Block 6, corresponding to
both the branches (if the variables are used somewhere, they are going to be live also in the if condition).

Equations for entry and exit functions:

Example

𝑥 ≔ 2 1;
𝑦 ≔ 4 2;
𝑥 ≔ 1 3;

𝑖𝑓 𝑦 > 𝑥 4 𝑡ℎ𝑒𝑛
 𝑧 ≔ 𝑦 5;
𝑒𝑙𝑠𝑒
 𝑧 ≔ 𝑦 ∗ 𝑦 6;
𝑥 ≔ 𝑧 7

𝒍 𝑳𝑽𝒆𝒏𝒕𝒓𝒚 (𝒍) 𝑳𝑽𝒆𝒙𝒊𝒕 (𝒍)

1 ∅ ∅

2 ∅ {𝑦}

3 {𝑦} {𝑥, 𝑦}

4 {𝑥, 𝑦} {𝑦}

5 {𝑦} {𝑧}

6 {𝑦} {𝑧}

7 {𝑧} ∅

	Slide 1: Data-Flow Analysis
	Slide 2: The While Language
	Slide 3: Syntactic Categories
	Slide 4: Syntax
	Slide 5: Example Program (Factorial)
	Slide 6: Data Flow Analysis
	Slide 7
	Slide 8: Initial Labels
	Slide 9: Final Labels
	Slide 10: Blocks
	Slide 11: Flow
	Slide 12: Reverse Flow
	Slide 13: Example (The Power Program)
	Slide 14: Classification of Analyses
	Slide 15: Intraprocedural vs Interprocedural
	Slide 16: Flow-sensitive vs flow-insensitive
	Slide 17: Context-insensitive vs context-sensitive
	Slide 18: Must vs may
	Slide 19: Forward vs Backward
	Slide 20: Four Classic Analyses
	Slide 21: Four Classic Analyses
	Slide 22: Available Expressions
	Slide 23: Example
	Slide 24: Killed Expression
	Slide 25: Killed Expression
	Slide 26: Generated Expression
	Slide 27: Analysis
	Slide 28: Example
	Slide 29: Example
	Slide 30: Example
	Slide 31: Example
	Slide 32: Four Classic Analyses
	Slide 33: Reaching Definitions
	Slide 34: Example
	Slide 35: Killed Assignments
	Slide 36: Killed Assignments
	Slide 37: Generated Assignments
	Slide 38: Analysis
	Slide 39: Example
	Slide 40: Example
	Slide 41: Example
	Slide 42: Four Classic Analyses
	Slide 43: Very Busy Expressions
	Slide 44: Example
	Slide 45: Killed Expressions
	Slide 46: Killed Expressions
	Slide 47: Generated Expressions
	Slide 48: Analysis
	Slide 49: Example
	Slide 50: Example
	Slide 51: Example
	Slide 52: Four Classic Analyses
	Slide 53: Live Variables
	Slide 54: Example
	Slide 55: Killed Variables
	Slide 56: Generated Variables
	Slide 57: Analysis
	Slide 58: Example
	Slide 59: Example
	Slide 60: Example
	Slide 61: Example

