
04834580 Software Engineering (Honor Track) 2024-25

Design Principles

Sergey Mechtaev
mechtaev@pku.edu.cn

School of Computer Science, Peking University

mailto:mechtaev@pku.edu.cn

Separation of Concerns

Edsger W. Dijkstra in “On the role of scientific thought” [1]:

Let me try to explain to you, what to my taste is characteristic for all intelligent thinking.
It is, that one is willing to study in depth an aspect of one’s subject matter in isolation for
the sake of its own consistency, all the time knowing that one is occupying oneself only
with one of the aspects. We know that a program must be correct and we can study it
from that viewpoint only; we also know that it should be efficient and we can study its
efficiency on another day, so to speak. In another mood we may ask ourselves whether,
and if so: why, the program is desirable. But nothing is gained — on the contrary! —
by tackling these various aspects simultaneously. It is what I sometimes have called “the
separation of concerns”, which, even if not perfectly possible, is yet the only available
technique for effective ordering of one’s thoughts, that I know of. This is what I mean
by “focusing one’s attention upon some aspect”: it does not mean ignoring the other
aspects, it is just doing justice to the fact that from this aspect’s point of view, the other
is irrelevant. It is being one- and multiple-track minded simultaneously.

04834580 Software Engineering (Honor Track) 2024-25 / Design Principles 2 / 19

Separation of Concerns: HTML, CSS, JavaScript

04834580 Software Engineering (Honor Track) 2024-25 / Design Principles 3 / 19

Separation of Concerns: TCP/IP Protocol Stack

04834580 Software Engineering (Honor Track) 2024-25 / Design Principles 4 / 19

Separation of Concerns: Parsers

04834580 Software Engineering (Honor Track) 2024-25 / Design Principles 5 / 19

Single Responsibility Principle

Robert C. Martin, the originator of the term [2, 3], expresses the principle as

A class should have only one reason to change.

Illustrating Example:

As an example, consider a module that compiles and prints a report. Imagine such a
module can be changed for two reasons. First, the content of the report could change.
Second, the format of the report could change. These two things change for different
causes. The single responsibility principle says that these two aspects of the problem
are really two separate responsibilities, and should, therefore, be in separate classes or
modules. It would be a bad design to couple two things that change for different reasons
at different times.

04834580 Software Engineering (Honor Track) 2024-25 / Design Principles 6 / 19

Open/Closed Principle

Formulated by Bertrand Meyer [4]:

Software entities (classes, modules, functions, etc.) should be open for ex-
tension, but closed for modification.

04834580 Software Engineering (Honor Track) 2024-25 / Design Principles 7 / 19

Open/Closed Principle: Negative Example

class Drawing {

public void drawShape(String shape) {

if ("circle".equals(shape)) {

System.out.println("Drawing a circle");

} else if ("rectangle".equals(shape)) {

System.out.println("Drawing a rectangle");

}

// Adding new shapes requires modifying this method:

// else if ("triangle".equals(shape)) {

// System.out.println("Drawing a triangle");

// }

}

}

04834580 Software Engineering (Honor Track) 2024-25 / Design Principles 8 / 19

Open/Closed Principle: Improved Example

interface Shape {
void draw();

}

// Implement different shapes
class Circle implements Shape {

@Override
public void draw() {

System.out.println("Drawing a circle");
}

}

class Rectangle implements Shape {
@Override
public void draw() {

System.out.println("Drawing a rectangle");
}

}

// Add a Drawing class that works with the Shape abstraction
class Drawing {

public void drawShape(Shape shape) {
shape.draw();

}
}

04834580 Software Engineering (Honor Track) 2024-25 / Design Principles 9 / 19

Two Example of Inheritance

class Rectangle {
private double width;
private double height;

public Rectangle(double width, double height) {
this.width = width;
this.height = height;

}

...

public double calculateArea() {
return width * height;

}
}

class Square extends Rectangle {
public Square(double side) {

super(side, side);
}

}

class Square {
private double side;

public Square(double side) {
this.side = side;

}

public double calculateArea() {
return side * side;

}
}

class Rectangle extends Square {
private double height;

public Rectangle(double width, double height) {
super(width);
this.height = height;

}

@Override
public double calculateArea() {

return getWidth() * height;
}

}

04834580 Software Engineering (Honor Track) 2024-25 / Design Principles 10 / 19

Liskov Substitution Principle

Barbara Liskov and Jeannette Wing formulated this principle in “A behavioral notion
of subtyping” [5]:

Subtype Requirement: Let ϕ(x) be a property provable about objects x of
type T . Then ϕ(y) should be true for objects y of type S where S is a
subtype of T .

04834580 Software Engineering (Honor Track) 2024-25 / Design Principles 11 / 19

Shallow And Deep Interfaces

Deep modules provide a lot of functionality behind a simple interface, while shallow
modules have a relatively complicated interface.

04834580 Software Engineering (Honor Track) 2024-25 / Design Principles 12 / 19

Shallow And Deep Interfaces: UNIX I/O

int open(const char* path, int flags, mode_t permissions)

int close(int fd)

ssize_t read(int fd, void* buffer, size_t const)

ssize_t write(int fd, const void* buffer, size_t count)

off_t lseek(int fd, off_t offset, int referencePosition)

Abstracts:

▶ On-disk representation, disk block allocation

▶ Directory management, path lookup

▶ Permission management

▶ Disk scheduling

▶ Block caching

04834580 Software Engineering (Honor Track) 2024-25 / Design Principles 13 / 19

Shallow And Deep Interfaces: Virtual Memory

04834580 Software Engineering (Honor Track) 2024-25 / Design Principles 14 / 19

Linus Torvalds on Good Taste

Linus Torvalds in TED interview [6]:

sometimes you can see a problem in a different way and rewrite it so that a special case
goes away and becomes the normal case, and that’s good code

void remove(list *l, list_item *target)
{

list_item *cur = l->head, *prev = NULL;
while (cur != target) {

prev = cur;
cur = cur->next;

}
if (prev)

prev->next = cur->next;
else

l->head = cur->next;
}

void remove(list *l, list_item *target)
{

list_item **p = &l->head;
while (*p != target)

p = &(*p)->next;
*p = target->next;

}

04834580 Software Engineering (Honor Track) 2024-25 / Design Principles 15 / 19

YAGNI (You Aren’t Gonna Need It)

Ron Jeffries, a co-founder of extreme programming (XP):

Always implement things when you actually need them, never when you just
foresee that you will need them.

04834580 Software Engineering (Honor Track) 2024-25 / Design Principles 16 / 19

Other Principles

▶ DRY (Don’t Repeat Yourself)

▶ KISS (Keep it simple, stupid!)

04834580 Software Engineering (Honor Track) 2024-25 / Design Principles 17 / 19

References I

[1] Edsger W Dijkstra and Edsger W Dijkstra.
On the role of scientific thought.
Selected writings on computing: a personal perspective, pages 60–66, 1982.

[2] Micah Martin and Robert C Martin.
Agile principles, patterns, and practices in C.
Pearson Education, 2006.

[3] Robert C. Martin.
The single responsibility principle.
https://blog.cleancoder.com/uncle-bob/2014/05/08/

SingleReponsibilityPrinciple.html, 2014.

[4] Bertrand Meyer.
Object-oriented software construction, volume 2.
Prentice hall Englewood Cliffs, 1997.

04834580 Software Engineering (Honor Track) 2024-25 / Design Principles 18 / 19

https://blog.cleancoder.com/uncle-bob/2014/05/08/SingleReponsibilityPrinciple.html
https://blog.cleancoder.com/uncle-bob/2014/05/08/SingleReponsibilityPrinciple.html

References II

[5] Barbara H Liskov and Jeannette M Wing.
A behavioral notion of subtyping.
ACM Transactions on Programming Languages and Systems (TOPLAS),
16(6):1811–1841, 1994.

[6] Linus Torvalds.
The mind behind linux.
https://www.ted.com/talks/linus_torvalds_the_mind_behind_linux,
2016.

04834580 Software Engineering (Honor Track) 2024-25 / Design Principles 19 / 19

https://www.ted.com/talks/linus_torvalds_the_mind_behind_linux

