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Dynamic Analysis

Definition. Dynamic program analysis is the analysis of computer 
software that is performed by executing programs on a real or 
virtual processor.

• Detecting race conditions

• Detecting buffer overflows

• Detecting memory leaks

• Dynamic taint analysis
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Race Conditions

Definition. A race condition is the situation in which multiple 
threads or processes read and write a shared data item and the 
final result depends on the order of execution.

Thread 2: 

int i = 0;

i = i + 1;

Thread 1: 

i = i + 1;
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Race Condition Impact

• Endanger system robustness
• Corrupted memory and state, violated data structure invariants
• Inconsistent and/or wrong behavior, crashes

• Endanger system security
• Time-of-check to time-of-use problem

• Unpredictable and non deterministic

• Real example
• Therac-25 radiation therapy machine led to the death of three patients 

and injuries to several more in late ‘80s
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Shadow Memory
Application memory

Shadow memory

Shadow memory is used to track memory accesses by
threads during program execution 
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Happens-Before Relation

Given events A and B, A happens-before B iff

• A and B are executed by the same thread t and t executes A 
before B

• A and B are executed by different threads and A sends a 
message to B 

• A send may have a single receiver, multiple receivers or none
• Send events: lock release, notify(), notifyAll(), start()
• Receive evens: lock acquire, join(), wait();

• There exists event C such that A happens-before C and C 
happens-before B
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Race Condition Detection

• There are two concurrent events A and B (neither A happens-
before B nor B happens-before A)

• A and B access the same memory word

• At least one of the two accesses is a write access



Race Condition Example
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lock(l)
v := v + 1
unlock(l)

Thread 1

lock(l)
v := v + 1
unlock(l)

Thread 2

x := x + 1

x := x + 1



Race Condition Example
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lock(l)
v := v + 1
unlock(l)

Thread 1

lock(l)
v := v + 1
unlock(l)

Thread 2

x := x + 1
x := x + 1
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Memory Errors

• Use after free (dangling pointer dereference)

• Heap buffer overflow

• Stack buffer overflow

• Global buffer overflow

• Use after return

• Use after scope

• Initialization order bugs
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Memory Errors Detection

• Poisoned memory around allocated blocks, and inside 
deallocated blocks

Allocated object

Poisoned region

Poisoned region
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Memory Errors Detection

Use code instrumentation to check reads and writes of poisoned 
memory
• Before:

*address = ...;  // or: ... = *address;

• After:

if (IsPoisoned(address)) {
    ReportError(address, kAccessSize, kIsWrite);
  }
  *address = ...;  // or: ... = *address;
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Memory Leaks

Definition. A type of resource leak that occurs when a computer 
program incorrectly manages memory allocations in such a way 
that memory which is no longer needed is not released.
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Memory Leak Detection

1. Execute the program and check memory at 
the end of the process’ lifetime
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Memory Leak Detection

2. Obtain the root set of live memory (global 
variables, registers, etc)
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Memory Leak Detection

3. Scan memory to find all memory blocks 
reachable from the roots
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Memory Leak Detection

4. Report unreachable blocks as leaks
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Blackbox Fuzzing

• Given a program simply feed random inputs and see whether it 
exhibits incorrect behavior (e.g., using dynamic analysis)

• + easy, low programmer cost
• - inefficient

• Inputs often require structures, random inputs are mostly malformed
• Inputs that trigger an incorrect behavior is a very small fraction, 

probably of getting lucky is very low 

© Sergey Mechtaev

Random
input

Program
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Mutation-based Fuzzing

• Take a well-formed input, randomly perturb (flipping bit, etc.)
• Anomalies are added to existing valid inputs (either random 

or follow heuristics e.g., removing NULL, shift characters)
• + easy, improved efficiency
• - limited by initial corpus
• - mutated inputs are still often invalid

© Sergey Mechtaev

Seed
input

Mutated
input

Program
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Code Coverage

Coverage for the input

a = [ 3, 7, 5 ]

Executes 7 out of 10 blocks, so 
statement coverage is 70%

Entry

a == NULL || a.length < 2

i = 0;

i < a.length - 1

a[i] < a[i+1]

i++; break;

i > a.length - 1

qsort(a, 0, a.length); return;

Exit

return;

False True

True

False True

False True

False
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Path ID (AFL)

For a given program P, assume there is an order of arcs in CFG: 
A1, A2, A3, …

For a given input I, PathID(I) is a vector [N1, N2, N3, ...], 
where the Ni is the number of times Ai has executed by I.

If two inputs have different path IDs, then they follow different 
paths.

© Sergey Mechtaev
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Coverage-guided Graybox Fuzzing

• Special type of mutation-based fuzzing
• Run mutated inputs on instrumented program and compute Path IDs
• Search for mutants that discover new Path IDs
• Use metaheuristics such as genetic algorithms

• Examples:  AFL, libfuzzer

© Sergey Mechtaev
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Coverage-guided Graybox Fuzzing

© Sergey Mechtaev

Seed
corpus

Mutated
input

Program

Queue

Choose input, 
assign energy

Input

Is interesting?

Yes No

Discard
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Is Interesting? And Power Schedules

• Is Interesting?
• Generally, checks if new paths are uncovered
• AFL defines "is interesting" for path ID [N1, N2, N3, ...] if any of 

round(log(Ni)) is different from other paths.

• Power schedule
• Energy determines how many time an input is fuzzed
• Optimisation: assigns low energy to seeds exercising high-frequency 

paths and high energy to seeds exercising low-frequency paths 
[AFLFast, CSS 2016]

© Sergey Mechtaev
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