
Dynamic Analysis & Fuzzing
Sergey Mechtaev

mechtaev@pku.edu.cn

Peking University

2

Dynamic Analysis

Definition. Dynamic program analysis is the analysis of computer
software that is performed by executing programs on a real or
virtual processor.

• Detecting race conditions

• Detecting buffer overflows

• Detecting memory leaks

• Dynamic taint analysis

3

Race Conditions

Definition. A race condition is the situation in which multiple
threads or processes read and write a shared data item and the
final result depends on the order of execution.

Thread 2:

int i = 0;

i = i + 1;

Thread 1:

i = i + 1;

4

Race Condition Impact

• Endanger system robustness
• Corrupted memory and state, violated data structure invariants
• Inconsistent and/or wrong behavior, crashes

• Endanger system security
• Time-of-check to time-of-use problem

• Unpredictable and non deterministic

• Real example
• Therac-25 radiation therapy machine led to the death of three patients

and injuries to several more in late ‘80s

5

Shadow Memory
Application memory

Shadow memory

Shadow memory is used to track memory accesses by
threads during program execution

6

Happens-Before Relation

Given events A and B, A happens-before B iff

• A and B are executed by the same thread t and t executes A
before B

• A and B are executed by different threads and A sends a
message to B

• A send may have a single receiver, multiple receivers or none
• Send events: lock release, notify(), notifyAll(), start()
• Receive evens: lock acquire, join(), wait();

• There exists event C such that A happens-before C and C
happens-before B

7

Race Condition Detection

• There are two concurrent events A and B (neither A happens-
before B nor B happens-before A)

• A and B access the same memory word

• At least one of the two accesses is a write access

Race Condition Example

8

lock(l)
v := v + 1
unlock(l)

Thread 1

lock(l)
v := v + 1
unlock(l)

Thread 2

x := x + 1

x := x + 1

Race Condition Example

9

lock(l)
v := v + 1
unlock(l)

Thread 1

lock(l)
v := v + 1
unlock(l)

Thread 2

x := x + 1
x := x + 1

10

Memory Errors

• Use after free (dangling pointer dereference)

• Heap buffer overflow

• Stack buffer overflow

• Global buffer overflow

• Use after return

• Use after scope

• Initialization order bugs

11

Memory Errors Detection

• Poisoned memory around allocated blocks, and inside
deallocated blocks

Allocated object

Poisoned region

Poisoned region

12

Memory Errors Detection

Use code instrumentation to check reads and writes of poisoned
memory
• Before:

*address = ...; // or: ... = *address;

• After:

if (IsPoisoned(address)) {
 ReportError(address, kAccessSize, kIsWrite);
 }
 *address = ...; // or: ... = *address;

13

Memory Leaks

Definition. A type of resource leak that occurs when a computer
program incorrectly manages memory allocations in such a way
that memory which is no longer needed is not released.

14

Memory Leak Detection

1. Execute the program and check memory at
the end of the process’ lifetime

15

Memory Leak Detection

2. Obtain the root set of live memory (global
variables, registers, etc)

16

Memory Leak Detection

3. Scan memory to find all memory blocks
reachable from the roots

17

Memory Leak Detection

4. Report unreachable blocks as leaks

18

Blackbox Fuzzing

• Given a program simply feed random inputs and see whether it
exhibits incorrect behavior (e.g., using dynamic analysis)

• + easy, low programmer cost
• - inefficient

• Inputs often require structures, random inputs are mostly malformed
• Inputs that trigger an incorrect behavior is a very small fraction,

probably of getting lucky is very low

© Sergey Mechtaev

Random
input

Program

19

Mutation-based Fuzzing

• Take a well-formed input, randomly perturb (flipping bit, etc.)
• Anomalies are added to existing valid inputs (either random

or follow heuristics e.g., removing NULL, shift characters)
• + easy, improved efficiency
• - limited by initial corpus
• - mutated inputs are still often invalid

© Sergey Mechtaev

Seed
input

Mutated
input

Program

20

Code Coverage

Coverage for the input

a = [3, 7, 5]

Executes 7 out of 10 blocks, so
statement coverage is 70%

Entry

a == NULL || a.length < 2

i = 0;

i < a.length - 1

a[i] < a[i+1]

i++; break;

i > a.length - 1

qsort(a, 0, a.length); return;

Exit

return;

False True

True

False True

False True

False

21

Path ID (AFL)

For a given program P, assume there is an order of arcs in CFG:
A1, A2, A3, …

For a given input I, PathID(I) is a vector [N1, N2, N3, ...],
where the Ni is the number of times Ai has executed by I.

If two inputs have different path IDs, then they follow different
paths.

© Sergey Mechtaev

22

Coverage-guided Graybox Fuzzing

• Special type of mutation-based fuzzing
• Run mutated inputs on instrumented program and compute Path IDs
• Search for mutants that discover new Path IDs
• Use metaheuristics such as genetic algorithms

• Examples: AFL, libfuzzer

© Sergey Mechtaev

23

Coverage-guided Graybox Fuzzing

© Sergey Mechtaev

Seed
corpus

Mutated
input

Program

Queue

Choose input,
assign energy

Input

Is interesting?

Yes No

Discard

24

Is Interesting? And Power Schedules

• Is Interesting?
• Generally, checks if new paths are uncovered
• AFL defines "is interesting" for path ID [N1, N2, N3, ...] if any of

round(log(Ni)) is different from other paths.

• Power schedule
• Energy determines how many time an input is fuzzed
• Optimisation: assigns low energy to seeds exercising high-frequency

paths and high energy to seeds exercising low-frequency paths
[AFLFast, CSS 2016]

© Sergey Mechtaev

	Dynamic Analysis & Fuzzing
	Dynamic Analysis
	Race Conditions
	Race Condition Impact
	Shadow Memory
	Happens-Before Relation
	Race Condition Detection
	Race Condition Example
	Race Condition Example (2)
	Memory Errors
	Memory Errors Detection
	Memory Errors Detection (2)
	Memory Leaks
	Memory Leak Detection
	Memory Leak Detection (2)
	Memory Leak Detection (3)
	Memory Leak Detection (4)
	Blackbox Fuzzing
	Mutation-based Fuzzing
	Code Coverage
	Path ID (AFL)
	Coverage-guided Graybox Fuzzing
	Coverage-guided Graybox Fuzzing
	Is Interesting? And Power Schedules

