
04834580 Software Engineering (Honor Track) 2024-25

LLMs for Code

Sergey Mechtaev
mechtaev@pku.edu.cn

School of Computer Science, Peking University

mailto:mechtaev@pku.edu.cn

Large Language Models

Definition (LLM)

A large language model (LLM) is a deep learning neural network, typically based on
the transformer architecture [1], trained on vast text corpora to learn statistical
patterns in language and generate, comprehend, and manipulate human-like text in
response to input prompts.

04834580 Software Engineering (Honor Track) 2024-25 / LLMs for Code 2 / 26

Data Collection

FineWeb [2] is a dataset of 15-trillion tokens (44TB disk space) of text collected
from the internet.

The Stack 2 [3] is a dataset of 900B tokens (32TB disk space) and 600+
programming languages.

04834580 Software Engineering (Honor Track) 2024-25 / LLMs for Code 3 / 26

What is a Tokenizer?

▶ Converts raw text into tokens (units for models to process)

▶ Key part of preprocessing for Large Language Models (LLMs)

▶ Often reversible (can decode tokens back to text)

Example:

playing → [play, ing]

04834580 Software Engineering (Honor Track) 2024-25 / LLMs for Code 4 / 26

Byte-Pair Encoding (BPE)

▶ Originally a data compression technique (Gage, 1994).

▶ Adapted for NLP as a subword tokenization algorithm.

▶ Repeatedly merges the most frequent pairs of bytes/characters.

▶ Produces a vocabulary of variable-length subword units.

04834580 Software Engineering (Honor Track) 2024-25 / LLMs for Code 5 / 26

BPE Example

Data to be encoded:

▶ aaabdaaabac

The byte pair “aa” occurs most often, so it will be replaced by a byte that is not
used in the data, such as “Z”:

▶ ZabdZabac

▶ Z=aa

04834580 Software Engineering (Honor Track) 2024-25 / LLMs for Code 6 / 26

BPE Example

Then the process is repeated with byte pair “ab”, replacing it with “Y”:

▶ ZYdZYac

▶ Y=ab

▶ Z=aa

Recursive byte pair encoding, replacing “ZY” with “X”:

▶ XdXac

▶ X=ZY

▶ Y=ab

▶ Z=aa

04834580 Software Engineering (Honor Track) 2024-25 / LLMs for Code 7 / 26

Autoregressive Language Models

▶ Model the joint probability of a sequence as the product of conditionals.

▶ Predict each token based on previous ones

▶ Given a sequence x = (x1, x2, ..., xT):

P(x) = P(x1) · P(x2|x1) · ... · P(xT |x1, ..., xT−1)

▶ Examples: n-gram models, RNNs, LSTMs, Transformers (e.g., GPT)

04834580 Software Engineering (Honor Track) 2024-25 / LLMs for Code 8 / 26

Pre-training LLMs

A sequence from the training data:

The children ran to the | playground.

04834580 Software Engineering (Honor Track) 2024-25 / LLMs for Code 9 / 26

Post-training LLMs

Fine-tuning LLM on instruction data, e.g. synthetic data [4], to train an assistant.

04834580 Software Engineering (Honor Track) 2024-25 / LLMs for Code 10 / 26

Few-shot learning

LLMs are able to extract patterns and generalize from few examples.

Prompt

This is awesome! // Negative
This is bad! // Positive
Wow that movie was rad! // Positive
What a horrible show! //

Response

Negative

04834580 Software Engineering (Honor Track) 2024-25 / LLMs for Code 11 / 26

Chain-of-Thought (CoT) [6]

Zero-shot-CoT [5] enables reasoning by adding “Let’s think step-by-step” to the
prompt.

04834580 Software Engineering (Honor Track) 2024-25 / LLMs for Code 12 / 26

LLM Temperature Parameter

Temperature is a parameter that controls the randomness of predictions in Large
Language Models (LLMs) during text generation.

How does it work?
▶ Lower temperature (T ≈ 0):

▶ Model outputs more deterministic and predictable text.
▶ Picks the most probable word almost every time.

▶ Higher temperature (T > 1):
▶ Model outputs more diverse and creative text.
▶ Increases likelihood of less probable words.

04834580 Software Engineering (Honor Track) 2024-25 / LLMs for Code 13 / 26

Evaluating Code Models

Pass@k is a metric used to evaluate the performance of code generation models [7].

Pass@k = E

[
1 −

(
n−c
k

)(
n
k

)]

where n is the number of samples, c is the number of samples passing tests.

04834580 Software Engineering (Honor Track) 2024-25 / LLMs for Code 14 / 26

Temperature vs Pass@K [7]

04834580 Software Engineering (Honor Track) 2024-25 / LLMs for Code 15 / 26

Challenge of Code Generation: Ambiguous Requirements

A function that takes a list of integers as an input. It returns True if there
are three distinct elements in the list that sum to zero, and False otherwise.

distinct

different values different indexes

04834580 Software Engineering (Honor Track) 2024-25 / LLMs for Code 16 / 26

Which Interpretation GPT-3.5-Turbo Chooses? — Both.

Prompt

A function that takes a list of integers as an input. It returns True if there are three distinct elements in the
list that sum to zero, and False otherwise.

Response

if len(l) < 3 or len(set(l)) < 3:
return False

for i in range(n-2):
for j in range(i+1, n-1):

for k in range(j+1, n):

if l[i]+l[j]+l[k]==0:
return True

return False

04834580 Software Engineering (Honor Track) 2024-25 / LLMs for Code 17 / 26

Clarify Ambiguous Language With Example?

From a graph defined via a list of connections between nodes,
remove all connections that repeat between the same nodes. Keep order
of remaining ones the same as in the input.

remove repeating connections

disconnect nodes with repeating edges remove redundant edges

Clarifying example:

assert remove_connections([(1, 2), (2, 3), (2, 1)]) == [(2, 3)]

04834580 Software Engineering (Honor Track) 2024-25 / LLMs for Code 18 / 26

DeepSeek-v3 Chooses Inconsistent Interpretation

Prompt

From a graph defined via a list ...

assert remove_connections([(1, 2), (2, 3), (2, 1)]) == [(2, 3)]

Response

seen = set()
result = []
for a, b in numbers:

edge = (min(a, b), max(a, b))
if edge not in seen:

seen.add(edge)
result.append((a, b))

return result

if __name__ == "__main__":
input_data = [(1, 2), (2, 3), (2, 1)]
output_data = g(input_data)
print(output_data) # Output: [(2, 3)]

The probability of this behaviour is P=1 approximated over 20 samples.

04834580 Software Engineering (Honor Track) 2024-25 / LLMs for Code 19 / 26

DeepSeek-v3 + Improved Requirements

Prompt

From a graph defined via a list of connections between nodes, remove all connections
that appear more than once (considering both (a,b) and (b,a) as the same connection).

Only keep connections that appear exactly once in the input, preserving their original order.

assert remove_connections([(1, 2), (2, 3), (2, 1)]) == [(2, 3)]

Response

def remove_ connections(nodes):
count = {}
for a, b in nodes:

key = tuple(sorted((a, b)))
count[key] = count.get(key, 0) + 1

return [(a, b) for a, b in nodes if count[tuple(sorted((a, b)))] == 1]

The probability of correct behaviour is P=1 approximated over 20 samples.

04834580 Software Engineering (Honor Track) 2024-25 / LLMs for Code 20 / 26

Reasoning About Program Execution

Write a python function to find the surface area of a square pyramid with a
given base edge and height.

assert surface_area(3,4) == 33

height

slant height vertical height

04834580 Software Engineering (Honor Track) 2024-25 / LLMs for Code 21 / 26

µFix (ICSE’25) “Repairs” Reasoning Based on Examples

The generated program mistakenly assumes that the height is the vertical height.

Prompt

...
assert surface Area(3,4) == 33
Let’s analyze the test cases step by step...
...

Response

...
The slant height l can be calculated using the Pythagorean theorem: l = sqrt((b/2)2 + s2). For b = 3 and

s = 4: l = sqrt((3/2)2 + 42) = sqrt(2.25 + 16) = sqrt(18.25) ∼ 4.272, base area = 32 = 9, lateral area =
2 ∗ 3 ∗ 4.272 ∼ 25.632, Surface Area = 9 + 25.632 ∼ 34.632, However, the expected output is 33, which

suggests a discrepancy in the formula or rounding .
...

04834580 Software Engineering (Honor Track) 2024-25 / LLMs for Code 22 / 26

Measuring LLM’s Uncertainty

Idea: compute the entropy of meaning-distribution.

Definition (Semantic Entropy by Kuhn et al. 2023)

Let m be an LLM, ≡ be a semantic equivalence relation over responses, m≡ be the
corresponding conditional distribution over equivalence classes. The semantic
entropy is defined as

SE(m≡(· | x)) ≜ −
∑
y

m≡(y | x) logm≡(y | x).

04834580 Software Engineering (Honor Track) 2024-25 / LLMs for Code 23 / 26

References I

[1] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Lukasz Kaiser, and Illia Polosukhin.
Attention is all you need.
Advances in neural information processing systems, 30, 2017.

[2] Guilherme Penedo, Hynek Kydĺıček, Anton Lozhkov, Margaret Mitchell, Colin A
Raffel, Leandro Von Werra, Thomas Wolf, et al.
The fineweb datasets: Decanting the web for the finest text data at scale.
Advances in Neural Information Processing Systems, 37:30811–30849, 2024.

[3] Anton Lozhkov, Raymond Li, Loubna Ben Allal, Federico Cassano, Joel
Lamy-Poirier, Nouamane Tazi, Ao Tang, Dmytro Pykhtar, Jiawei Liu, Yuxiang
Wei, et al.
Starcoder 2 and the stack v2: The next generation.
arXiv preprint arXiv:2402.19173, 2024.

04834580 Software Engineering (Honor Track) 2024-25 / LLMs for Code 24 / 26

References II

[4] Zhangchen Xu, Fengqing Jiang, Luyao Niu, Yuntian Deng, Radha Poovendran,
Yejin Choi, and Bill Yuchen Lin.
Magpie: Alignment data synthesis from scratch by prompting aligned llms with
nothing.
arXiv preprint arXiv:2406.08464, 2024.

[5] Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yutaka Matsuo, and Yusuke
Iwasawa.
Large language models are zero-shot reasoners.
Advances in neural information processing systems, 35:22199–22213, 2022.

[6] Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi,
Quoc V Le, Denny Zhou, et al.
Chain-of-thought prompting elicits reasoning in large language models.
Advances in neural information processing systems, 35:24824–24837, 2022.

04834580 Software Engineering (Honor Track) 2024-25 / LLMs for Code 25 / 26

References III

[7] Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde
De Oliveira Pinto, Jared Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph,
Greg Brockman, et al.
Evaluating large language models trained on code.
arXiv preprint arXiv:2107.03374, 2021.

04834580 Software Engineering (Honor Track) 2024-25 / LLMs for Code 26 / 26

	What is a Tokenizer?

