04834580 Software Engineering (Honor Track) 2024-25

Sergey Mechtaev
mechtaev@pku.edu.cn

School of Computer Science, Peking University

mailto:mechtaev@pku.edu.cn

Modeling

Definition (from SWEBOK [1

Modeling provides the software engineer with an organized and systematic approach
for representing significant aspects of the software under study, facilitating
decision-making about the software or elements, and communicating those
significant decisions to others in the stakeholder communities.

04834580 Software Engineering (Honor Track) 2024-25 / Modeling 2 /49

Graphical Modeling Languages g k¥

Software is invisible and unvisualizable. Geometric abstractions are powerful tools. The
floor plan of a building helps both architect and client evaluate spaces, traffic flows,
and views. Contradictions become obvious, omissions can be caught. Scale drawings of
mechanical parts and stick-figure models of molecules, although abstractions, serve the
same purpose. A geometric reality is captured in a geometric abstraction. The reality of
software is not inherently embedded in space. — Fred Brooks [2]

Eat-in'Kitchen

\ Formal Living
Formal Dining

Pantry

=

Family

Laundry ~

Storage 7
L%* E 112 Bath

04834580 Software Engineering (Honor Track) 2024-25 / Modeling 3/ 49

Model = Abstraction ez K

A model is an abstraction or simplification of a system. For example, a filesystem
can be modeled

as a directory tree: as blocks and partitions:

PR JPartition J-= s s snemsnsannnnnnnrans,

= — T T) ‘ 5‘1‘;’; Block Eroup0| Block Group N ‘s‘gé’f:r‘: '

bin | ‘Users‘ ‘ mnt ‘ S i

P PZERN DN
Is cd pwd N
< = Si Gl Block Inods Inod Dat:
Shared andrew| MO o e EE S e

‘ Downloads

== L
|Desktop ‘ ‘Applltatvons

AndyFolder ExperimentFoldr

04834580 Software Engineering (Honor Track) 2024-25 / Modeling 4/ 49

Unified Modeling Language (UML)

UNIFIED
MODELING ®
LANGUAGE -

UML is a formal modeling language that contains
» a notation (a way of expressing the model), and

» a description of what that notation means (a meta-model).

Formal means each element of the language has a strongly defined meaning, so you
can be confident that when you model a particular facet of your system it will not be

misunderstood.

04834580 Software Engineering (Honor Track) 2024-25 / Modeling 5/ 49

Example: Guitarist Class [3]

public class Guitarist extends Person implements MusicPlayer {
Guitar favoriteGuitar;
public Guitarist (String name) {
super (name) ;

// A couple of local methods for accessing the class's properties
public void setInstrument(Instrument instrument) {
if (instrument instanceof Guitar) {
this.favoriteGuitar = (Guitar) instrument;

else {
System.out.println("I'm not playing that thing!");
public Instrument getInstrument() {
return this.favoriteGuitar;

// Better implement this method as MusicPlayer requires it
public void play() {

System.out.println(super.getName() + "is going to do play the guitar now ...

if (this.favoriteGuitar !'= null) {
for (int strum = 1; strum < 500; strum++) {
this.favoriteGuitar.strum()

¥

System.out.println("Phew! Finished all that hard playing");
¥
else {

System.out.println("You haven't given me a guitar yet!");
}

// I'm a main program so need to implement this as well

public static void main(String[] args) {
MusicPlayer player = new Guitarist("Russ");
player.setInstrument (new Guitar("Burns Brian May Signature"));
player.play();

¥
04834580 Software Engineering (Honor Track) 2024-25 / Modeling

2k

6/ 49

Example: Informal Notation

Informal languages suffer from the dual problem of verbosity and ambiguity.

(an be told to play an instrument

Guitarist — -isone of these = — Person I
_____ 1

1 1
uses one of these is a kind of

Guitar I Person I

04834580 Software Engineering (Honor Track) 2024-25 / Modeling 7/49

Example: Formal UML Notation g k¥

Formal notation such as class diagram is informative and precise.

<<interface>>
MusicPlayer
Person m "
- name : String + i i):void
+ getName() : String + play() : void
A
Guitarist

+ getlnstrument() : Instrument

-+ setInstrument(Instrument instrument) : void
+ play() : void

+ main(args : String[]) : void

1

-favoriteGuitar

1

04834580 Software Engineering (Honor Track) 2024-25 / Modeling 8 /49

UML Diagrams

Type What can be modeled?

Use Case Interactions between your system and users/external systems.
Activity Sequential and parallel activities within your system.

Class Classes, types, interfaces, and the relationships between them.
Object Object instances of the classes defined in class diagrams.
Sequence The order of the interactions between objects.
Communication The ways in which objects interact and connections.

Timing Interactions between objects where timing is important.

Interaction Overview
Composite Structure
Component

Package

State Machine
Deployment

Collect sequence, communication, and timing.

The internals of a class or component.

Components within your system and their interfaces.
Hierarchy of groups of classes and components.

The state of an object throughout its lifetime.

How your system is deployed.

04834580 Software Engineering (Honor Track) 2024-25 / Modeling

9/ 49

Notes in UML Diagrams

Notes can be attached to elements of diagrams.

This note is just to show how a note can
be attatched to part of a diagram's
contents, in this case a class called

BlogAccount

BlogAccount

04834580 Software Engineering (Honor Track) 2024-25 / Modeling 10 / 49

Use Case Diagrams

A use case is a case (or situation) where your system is used to fulfill one or more of
your user's requirements; a use case captures a piece of functionality that the system
provides.

Example requirement:
The content management system shall allow an administrator to create a new
blog account, provided the personal details of the new blogger are verified
using the author credentials database.

04834580 Software Engineering (Honor Track) 2024-25 / Modeling 11/ 49

Use Case Diagrams: Actors e F K

Administrator is an actor: Administrator generalizes to User:

<<actor>> The more
Administrator general "User"

actor

Administrator User

The
--— Generalization
Arrow

The more
- specialized
"Administrator" actor

Administrator

04834580 Software Engineering (Honor Track) 2024-25 / Modeling 12 / 49

Use Case Diagrams: Use Cases and Communication Lines JezXx¥

A use case is something that provides
some measurable result to the user or an
external system:

(reatea
new Blog Account

04834580 Software Engineering (Honor Track) 2024-25 / Modeling

A communication line shows that an
actor participating in a use case:

(reatea
new Blog Account

Administrator

13 /49

Use Case Diagrams: Multiple Actors g k¥

A connection implies that an actor is simply involved in a use case, not to imply an
information exchange in any particular direction or that the actor starts the use case.

Administrator AuthorCredentialsDatabase

User

04834580 Software Engineering (Honor Track) 2024-25 / Modeling 14 / 49

Use Case Diagrams: System Boundaries

Administrator is outside of the system:

X

Administrator

Content Management System

(reate a
new Blog Account

04834580 Software Engineering (Honor Track) 2024-25 / Modeling

15 / 49

Use Case Diagrams: Include Relationship

Another requirements:
The content management system shall allow an administrator to create a
new personal Wiki, provided the personal details of the applying author are
verified using the Author Credentials Database.

Content Management System

— (reate a -
new Blog Account
Administrator Createa Author
new Personal Wiki Credentials
Database

04834580 Software Engineering (Honor Track) 2024-25 / Modeling 16 / 49

Use Case Diagrams: Include Relationship

ez k¥

This repetitive behavior shared between two use cases is best separated and captured

within a totally new use case.

X

Administrator

Content Management System

(reate a
new Blog Account

S i
)\ <<include>>

Check Identity

-7 .
 “/<<include>>

Create a
new Personal Wiki

Author

Credentials
Database

04834580 Software Engineering (Honor Track) 2024-25 / Modeling

17 / 49

Use Case Diagrams: Case Inheritance EY S

Use case inheritance is useful when you want to show that one use case is a special
type of another use case.

Content Management System

Create a
new Personal Wiki

<<indude>>

% Check Identity — %

7

<<indude>> Author

Credentials
Database

L/.

Administrator

(reate a new
Blog Account

Create anew
Regular Blog Account,

Create a new
Editorial Blog
Account

04834580 Software Engineering (Honor Track) 2024-25 / Modeling 18 / 49

Use Case Diagrams: Extend Relationship

ez k¥

A use case might completely reuse another use case's behavior, but that this reuse
was optional and dependent either on a runtime or system implementation decision

A
£ JCED
~

Administrator

Content Management System

(reatea
new Personal Wiki

71

« <<include>>
\Y

Check Identity

4
4 <<indude>>

<<extend>>,

<<extend>>‘\

(reate a new
Blog Account

Create a new
Editorial Blog
Account

Create a new
Regular Blog
Account

Author

Credentials
Database

04834580 Software Engineering (Honor Track) 2024-25 / Modeling

19 / 49

Use Case Diagrams: Overview EY S

Shows your system's context or domain:

Author Stores content Central Storage
|
Edits Content Stores author credentials
| |
Views Collaborates
Content Content Management System with <<actor>>
— Author Credentials
Database
Public - -
Administrates Administrates

Administrator

04834580 Software Engineering (Honor Track) 2024-25 / Modeling 20 / 49

¥

z

Use Case Diagrams: Example ELF 25

System Boundary

receive order

2<extend>> Order

Wine
Waiter\ confir er
place grder
Serve Cook
Food Food
(N Chef

<<extend>>N \(if wine was ordered}

Client\
facilitaté\payment
\

accept

{if wine
was
served}

<<extend>>
Pay for Aifwine 7 pay for
was Wine

consumed}

payment
Cashier

04834580 Software Engineering (Honor Track) 2024-25 / Modeling 21 / 49

Activity Diagrams ez X

Activity diagrams allow you to specify how your system will accomplish its goals.

Actions & Activities:

Activity TN Activity N
name frame

1
Wash Car

>G> —>®

1
1
~ 1 .,
~ .,
~ 1

.,

N 4
N

04834580 Software Engineering (Honor Track) 2024-25 / Modeling 22 /49

Activity Diagrams: Decisions & Merges

Decisions are used when you want to execute a different sequence of actions

depending on a condition.
| Outgoing edge |
/

’]
[authorized] 7 ,

Incoming edge —1—’% ,

’
, /

\ ’ /

_|%<>, ,'

’ [not authorized] !l;
4 -

Guard
conditions

04834580 Software Engineering (Honor Track) 2024-25 / Modeling 23 /49

Activity Diagrams: Decisions & Merges

The branched flows join together at a merge node, which marks the end of the
conditional behavior started at the decision node.

[wordCount = 0] Notify Blog Entry
I ; can't be empty

[wordCount >0 &
> K% Save Blog Entry < » Display status
\ \
\ \
N \
[wordCount > = 1000] Notify Blog Entry \\
S > too long

04834580 Software Engineering (Honor Track) 2024-25 / Modeling 24 / 49

Activity Diagrams: Fork & Join

Represent parallel actions in activity diagrams by using forks and joins.

Prepare
(ase

Prepare
hAotherboard
Fork 5 Join 5

04834580 Software Engineering (Honor Track) 2024-25 / Modeling 25 / 49

Activity Diagrams: Example FF B

Activity diagram for the computer assembly workflow:

Pre are
Motherboard

Prepare
Case
.9 Install Install Install Video Card,
Motherboard Drives Sound Card, @
and Modem

04834580 Software Engineering (Honor Track) 2024-25 / Modeling 26 / 49

Activity Diagrams: Objects

Object nodes to show data flowing through an activity:
Recel A Submi
O—> (i —> o (i > P F>@
//
Object node

04834580 Software Engineering (Honor Track) 2024-25 / Modeling 27 / 49

Activity Diagrams: Example

Ask System to
Create new Blog
Account

Select Account
Type

Enter Author's
Details

Verify Authar's
Details
.
.
[authorized] s 7 Inotauthorized]
Geate new Blog Reject
Account Application

mail Blog Accoun)
Summary to Authoy

04834580 Software Engineering (Honor Track) 2024-25 / Modeling 28 / 49

Class Diagrams

Visualize design of object-oriented systems.

04834580 Software Engineering (Honor Track) 2024-25 / Modeling

ClassName ClassName h ClassName ClassName I
Attribute Attribute Operation T
Attribute Attribute Operation
Operation
Operation

P

29 / 49

Class Diagrams: Visibility

Control access to attributes, operations, and even entire classes to effectively enforce

encapsulation.
_Name | public Protected Package Priv
(Notation) (+) (#) () F

More accessible to other Less accessible to other
parts of the system parts of the system

04834580 Software Engineering (Honor Track) 2024-25 / Modeling 30/ 49

Class Diagrams: Public Visibility

packagel |

BlogAccount | -~ v
PR ; T I DML
! -~ 22 aMethod() - - - - - - V ClassInSamePackage

N

package2 |

ClassInAnotherPackage SpecializedClassinAnotherPackage

04834580 Software Engineering (Honor Track) 2024-25 / Modeling 31/ 49

Class Diagrams: Protected Visibility g k¥

package1 |

BlogAccount | - X
T 2| # creationDate <<= - | Tt
,+~[> aMethod() - - - - - - - ClassinSamePackage
X ~—
v

package2

ClassinAnotherPackage SpecializedClassinAnotherPackage

04834580 Software Engineering (Honor Track) 2024-25 / Modeling 32 /49

ez k¥

Class Diagrams: Package Visibility

packagel |

BlogAccount | - v
’ K '§~countEntries() =1-. |ClassInSamePackage
X aMethod()---S--'/ =
X N

package2

ClassInAnotherPackage SpecializedClassinAnotherPackage

04834580 Software Engineering (Honor Track) 2024-25 / Modeling 33 /49

Class Diagrams: Private Visibility

packagel

BlogAccount | - X
R | hame<-- - - - - - ~ Bt
> B -~ [>T aMethod() - - - - - - 4 - '/ (lassInSamePackage
x VAN

package2 I

ClassInAnotherPackage SpecializedClassinAnotherPackage

04834580 Software Engineering (Honor Track) 2024-25 / Modeling 34 /49

Class Diagrams: Attributes

A class's attributes are the pieces of information that represent the state of an object.

An attribute
by association

4
4
4

BlogAccount
Inline i
) ~ — _|-name:String
attributes | ++publicURL : URL
Z N]

4 *
1

-entries

/ \
4 \

~

BlogEntry

Visibilitylﬁ Name Ill

Type lﬁ

04834580 Software Engineering (Honor Track) 2024-25 / Modeling

35 / 49

Class Diagrams: Multiplicity g k¥

Multiplicity allows you to specify that an attribute actually represents a collection of
objects.

BlogAccount 1 * BlogEntry
-name : String - entries {ordered} - trackbacks : Trackback [*] {unique}
+ publicURL : URL - comments : Comment [*] {ordered}
- authors : Author [1..5]

04834580 Software Engineering (Honor Track) 2024-25 / Modeling 36 / 49

Class Diagrams: Operations

ez k¥

A class's attributes are the pieces of information that represent the state of an object.

BlogAccou

nt

-name : String
+ publicURL : URL

- authors : Author [1..5]

+ addEntry() : void

e
7
e

S
1

~
~
S

— = = | Anoperation |

Visibility 'ﬁ

Name Iﬁ

Parentheses for Return Type
Paramenters

Parameters:

BlogAccount

-name : String
+ publicURL : URL
-authors : Author [1..5]

+ addEntry(newEntry : BlogEntry, author : Author) : void

04834580 Software Engineering (Honor Track) 2024-25

/ Modeling

37 /49

Weaker Class relationship

Class Diagrams: Class Relationship

UML offers five different types of class relationship:

Stronger Class relationship

Dependency Association Aggregation Composition
-------- .
Dashed Arrow Simple Connecting Line | Empty Diamond Arrow | Filled Diamond Arrow:
When objects of one | When objects of one | When one class owns but When one class
class work briefly with class work with shares a reference to contains objects of
objects of another class | objects of another class| objects of another class another class
for some prolonged
amount of time

04834580 Software Engineering (Honor Track) 2024-25 / Modeling

When one classis a
type of another class

ez k¥

38 / 49

Class Diagrams: Dependency

A dependency between two classes declares that a class needs to know about another

class to use objects of that class.

The Dependency Arrow |

Userinterface f------- \ _>

04834580 Software Engineering (Honor Track) 2024-25 / Modeling

BlogEntry

39 / 49

Class Diagrams: Association

Association means that a class will actually contain a reference to an object, or
objects, of the other class in the form of an attribute.

Association Line
Association Name

\ (optional)
\ 7
\ /7
\ L
\ has »

‘l *
1
| BlogAccount Il—blog -entriesi BlogEntry i

04834580 Software Engineering (Honor Track) 2024-25 / Modeling 40 / 49

Class Diagrams: Aggregation EF RS

Aggregation is really just a stronger version of association and is used to indicate
that a class actually owns but may share objects of another class.

Aggregation
Diamond

1
1 owns p- *

04834580 Software Engineering (Honor Track) 2024-25 / Modeling 41 / 49

Class Diagrams: Composition

Even stronger relationship than aggregation, part of. If the blog entry is deleted,
then its corresponding parts are also deleted.

Composition
Diamond

1
1

BlogEntry ‘ ! ! Introduction

1

MainBody

04834580 Software Engineering (Honor Track) 2024-25 / Modeling 42 / 49

Class Diagrams: Inheritance

A class that is a type of another class.

_ The more
Article -=--" generalized classes
________ The Generalization
Arrow

BlogEntry WikiPage

The more
specialized classes

I

04834580 Software Engineering (Honor Track) 2024-25 / Modeling 43 / 49

Class Diagrams: Interfaces

An interface is a collection of operations that have no corresponding method

implementations.

<<interface>>
EmailSystem

+send(message : Message) : void

04834580 Software Engineering (Honor Track) 2024-25 / Modeling

SMTPMailSystem

\ +send(message : Message) : void

The Realization
Arrow

44 / 49

Sequence Diagrams g k¥

Sequence diagrams are all about capturing the order of interactions between parts of
your system.

Participants in a Sequence Diagram:

| participant1 : ParticipantClass | | participant2 : ParticipantClass2
.
~ ’
! H A H
[N 4 [l
Participant name and H participants | H
corresponding Class N -
Y P
' ~ - '
H S . H
[> i [l
: Y lifelines |' :

04834580 Software Engineering (Honor Track) 2024-25 / Modeling 45 / 49

Sequence Diagrams: Events & Messages

An event is any point in an interaction where something occurs.

participant1 : Participant(lassl Iparticipantz : Participant(la552|
message o
‘ 7L_l
\ g
A .
A .
. N :
] ‘\ :’ L
' \ . .
L \) . L}
' . K '
A“Send A“Receive
Message” Event Message” Event

04834580 Software Engineering (Honor Track) 2024-25 / Modeling 46 / 49

Sequence Diagrams: Example i LS

<<actor>>
admin : Administrator

<<actor>> <<actor>>

+ ContentManagementSystem acd : AuthorCredentialsDB es: EmailSystem

1 createNewBlogAccount _

selectBlogAccountType(type) U

enterAuthorDetails(author : AuthorDetails) :
checkAuthorDetails(author : AuthorDetails)

createNewRegularBlogAccount (author : AuthorDetails) |

emailBlogDetails (reqularBlogAccount)

sendEmail(email : Email)

G EE L L L L LR LEEEED :

04834580 Software Engineering (Honor Track) 2024-25 / Modeling 47 / 49

Sequence Diagrams: Example

‘ oetvery team ‘

Version control Build & unit User Release
tests acceptance tests tests
Trigger !

}—)D '
'

Feedback .
i '

'

'

'

'

:

:

Check in

Check in
Trigger

Feedback Trigger
I

Feedback

Check in

Trigger

| Feedback Trigger

Feedback Approval

Feedback Approval

04834580 Software Engineering (Honor Track) 2024-25 / Modeling 48 / 49

References | JeF K

[1] Alain Abran, James W Moore, Pierre Bourque, Robert Dupuis, and L Tripp.
Software engineering body of knowledge.
IEEE Computer Society, Angela Burgess, 25:1235, 2004.

[2] Frederick Brooks and H Kugler.
No silver bullet.
April, 1987.

[3] Russ Miles and Kim Hamilton.
Learning UML 2.0: a pragmatic introduction to UML.
" O'Reilly Media, Inc.”, 2006.

04834580 Software Engineering (Honor Track) 2024-25 / Modeling 49 / 49

