
04834580 Software Engineering (Honor Track) 2024-25

Modeling

Sergey Mechtaev
mechtaev@pku.edu.cn

School of Computer Science, Peking University

mailto:mechtaev@pku.edu.cn


Modeling

Definition (from SWEBOK [1])
Modeling provides the software engineer with an organized and systematic approach
for representing significant aspects of the software under study, facilitating
decision-making about the software or elements, and communicating those
significant decisions to others in the stakeholder communities.

04834580 Software Engineering (Honor Track) 2024-25 / Modeling 2 / 49



Graphical Modeling Languages

Software is invisible and unvisualizable. Geometric abstractions are powerful tools. The
floor plan of a building helps both architect and client evaluate spaces, traffic flows,
and views. Contradictions become obvious, omissions can be caught. Scale drawings of
mechanical parts and stick-figure models of molecules, although abstractions, serve the
same purpose. A geometric reality is captured in a geometric abstraction. The reality of
software is not inherently embedded in space. — Fred Brooks [2]

04834580 Software Engineering (Honor Track) 2024-25 / Modeling 3 / 49



Model = Abstraction

A model is an abstraction or simplification of a system. For example, a filesystem
can be modeled

as a directory tree: as blocks and partitions:

04834580 Software Engineering (Honor Track) 2024-25 / Modeling 4 / 49



Unified Modeling Language (UML)

UML is a formal modeling language that contains

▶ a notation (a way of expressing the model), and

▶ a description of what that notation means (a meta-model).

Formal means each element of the language has a strongly defined meaning, so you
can be confident that when you model a particular facet of your system it will not be
misunderstood.

04834580 Software Engineering (Honor Track) 2024-25 / Modeling 5 / 49



Example: Guitarist Class [3]

public class Guitarist extends Person implements MusicPlayer {

Guitar favoriteGuitar;

public Guitarist (String name) {

super(name);

}

// A couple of local methods for accessing the class's properties

public void setInstrument(Instrument instrument) {

if (instrument instanceof Guitar) {

this.favoriteGuitar = (Guitar) instrument;

}

else {

System.out.println("I'm not playing that thing!");

}

}

public Instrument getInstrument() {

return this.favoriteGuitar;

}

// Better implement this method as MusicPlayer requires it

public void play() {

System.out.println(super.getName() + "is going to do play the guitar now ...");

if (this.favoriteGuitar != null) {

for (int strum = 1; strum < 500; strum++) {

this.favoriteGuitar.strum();

}

System.out.println("Phew! Finished all that hard playing");

}

else {

System.out.println("You haven't given me a guitar yet!");

}

}

// I'm a main program so need to implement this as well

public static void main(String[] args) {

MusicPlayer player = new Guitarist("Russ");

player.setInstrument(new Guitar("Burns Brian May Signature"));

player.play();

}

}

04834580 Software Engineering (Honor Track) 2024-25 / Modeling 6 / 49



Example: Informal Notation

Informal languages suffer from the dual problem of verbosity and ambiguity.

04834580 Software Engineering (Honor Track) 2024-25 / Modeling 7 / 49



Example: Formal UML Notation

Formal notation such as class diagram is informative and precise.

04834580 Software Engineering (Honor Track) 2024-25 / Modeling 8 / 49



UML Diagrams

Type What can be modeled?

Use Case Interactions between your system and users/external systems.
Activity Sequential and parallel activities within your system.
Class Classes, types, interfaces, and the relationships between them.
Object Object instances of the classes defined in class diagrams.
Sequence The order of the interactions between objects.
Communication The ways in which objects interact and connections.
Timing Interactions between objects where timing is important.
Interaction Overview Collect sequence, communication, and timing.
Composite Structure The internals of a class or component.
Component Components within your system and their interfaces.
Package Hierarchy of groups of classes and components.
State Machine The state of an object throughout its lifetime.
Deployment How your system is deployed.

04834580 Software Engineering (Honor Track) 2024-25 / Modeling 9 / 49



Notes in UML Diagrams

Notes can be attached to elements of diagrams.

04834580 Software Engineering (Honor Track) 2024-25 / Modeling 10 / 49



Use Case Diagrams

A use case is a case (or situation) where your system is used to fulfill one or more of
your user’s requirements; a use case captures a piece of functionality that the system
provides.

Example requirement:

The content management system shall allow an administrator to create a new
blog account, provided the personal details of the new blogger are verified
using the author credentials database.

04834580 Software Engineering (Honor Track) 2024-25 / Modeling 11 / 49



Use Case Diagrams: Actors

Administrator is an actor: Administrator generalizes to User:

04834580 Software Engineering (Honor Track) 2024-25 / Modeling 12 / 49



Use Case Diagrams: Use Cases and Communication Lines

A use case is something that provides
some measurable result to the user or an
external system:

A communication line shows that an
actor participating in a use case:

04834580 Software Engineering (Honor Track) 2024-25 / Modeling 13 / 49



Use Case Diagrams: Multiple Actors

A connection implies that an actor is simply involved in a use case, not to imply an
information exchange in any particular direction or that the actor starts the use case.

04834580 Software Engineering (Honor Track) 2024-25 / Modeling 14 / 49



Use Case Diagrams: System Boundaries

Administrator is outside of the system:

04834580 Software Engineering (Honor Track) 2024-25 / Modeling 15 / 49



Use Case Diagrams: Include Relationship

Another requirements:

The content management system shall allow an administrator to create a
new personal Wiki, provided the personal details of the applying author are
verified using the Author Credentials Database.

04834580 Software Engineering (Honor Track) 2024-25 / Modeling 16 / 49



Use Case Diagrams: Include Relationship

This repetitive behavior shared between two use cases is best separated and captured
within a totally new use case.

04834580 Software Engineering (Honor Track) 2024-25 / Modeling 17 / 49



Use Case Diagrams: Case Inheritance

Use case inheritance is useful when you want to show that one use case is a special
type of another use case.

04834580 Software Engineering (Honor Track) 2024-25 / Modeling 18 / 49



Use Case Diagrams: Extend Relationship

A use case might completely reuse another use case’s behavior, but that this reuse
was optional and dependent either on a runtime or system implementation decision

04834580 Software Engineering (Honor Track) 2024-25 / Modeling 19 / 49



Use Case Diagrams: Overview

Shows your system’s context or domain:

04834580 Software Engineering (Honor Track) 2024-25 / Modeling 20 / 49



Use Case Diagrams: Example

04834580 Software Engineering (Honor Track) 2024-25 / Modeling 21 / 49



Activity Diagrams

Activity diagrams allow you to specify how your system will accomplish its goals.

Actions & Activities:

04834580 Software Engineering (Honor Track) 2024-25 / Modeling 22 / 49



Activity Diagrams: Decisions & Merges

Decisions are used when you want to execute a different sequence of actions
depending on a condition.

04834580 Software Engineering (Honor Track) 2024-25 / Modeling 23 / 49



Activity Diagrams: Decisions & Merges

The branched flows join together at a merge node, which marks the end of the
conditional behavior started at the decision node.

04834580 Software Engineering (Honor Track) 2024-25 / Modeling 24 / 49



Activity Diagrams: Fork & Join

Represent parallel actions in activity diagrams by using forks and joins.

04834580 Software Engineering (Honor Track) 2024-25 / Modeling 25 / 49



Activity Diagrams: Example

Activity diagram for the computer assembly workflow:

04834580 Software Engineering (Honor Track) 2024-25 / Modeling 26 / 49



Activity Diagrams: Objects

Object nodes to show data flowing through an activity:

04834580 Software Engineering (Honor Track) 2024-25 / Modeling 27 / 49



Activity Diagrams: Example

04834580 Software Engineering (Honor Track) 2024-25 / Modeling 28 / 49



Class Diagrams

Visualize design of object-oriented systems.

04834580 Software Engineering (Honor Track) 2024-25 / Modeling 29 / 49



Class Diagrams: Visibility

Control access to attributes, operations, and even entire classes to effectively enforce
encapsulation.

04834580 Software Engineering (Honor Track) 2024-25 / Modeling 30 / 49



Class Diagrams: Public Visibility

04834580 Software Engineering (Honor Track) 2024-25 / Modeling 31 / 49



Class Diagrams: Protected Visibility

04834580 Software Engineering (Honor Track) 2024-25 / Modeling 32 / 49



Class Diagrams: Package Visibility

04834580 Software Engineering (Honor Track) 2024-25 / Modeling 33 / 49



Class Diagrams: Private Visibility

04834580 Software Engineering (Honor Track) 2024-25 / Modeling 34 / 49



Class Diagrams: Attributes

A class’s attributes are the pieces of information that represent the state of an object.

04834580 Software Engineering (Honor Track) 2024-25 / Modeling 35 / 49



Class Diagrams: Multiplicity

Multiplicity allows you to specify that an attribute actually represents a collection of
objects.

04834580 Software Engineering (Honor Track) 2024-25 / Modeling 36 / 49



Class Diagrams: Operations

A class’s attributes are the pieces of information that represent the state of an object.

Parameters:

04834580 Software Engineering (Honor Track) 2024-25 / Modeling 37 / 49



Class Diagrams: Class Relationship

UML offers five different types of class relationship:

04834580 Software Engineering (Honor Track) 2024-25 / Modeling 38 / 49



Class Diagrams: Dependency

A dependency between two classes declares that a class needs to know about another
class to use objects of that class.

04834580 Software Engineering (Honor Track) 2024-25 / Modeling 39 / 49



Class Diagrams: Association

Association means that a class will actually contain a reference to an object, or
objects, of the other class in the form of an attribute.

04834580 Software Engineering (Honor Track) 2024-25 / Modeling 40 / 49



Class Diagrams: Aggregation

Aggregation is really just a stronger version of association and is used to indicate
that a class actually owns but may share objects of another class.

04834580 Software Engineering (Honor Track) 2024-25 / Modeling 41 / 49



Class Diagrams: Composition

Even stronger relationship than aggregation, part of. If the blog entry is deleted,
then its corresponding parts are also deleted.

04834580 Software Engineering (Honor Track) 2024-25 / Modeling 42 / 49



Class Diagrams: Inheritance

A class that is a type of another class.

04834580 Software Engineering (Honor Track) 2024-25 / Modeling 43 / 49



Class Diagrams: Interfaces

An interface is a collection of operations that have no corresponding method
implementations.

04834580 Software Engineering (Honor Track) 2024-25 / Modeling 44 / 49



Sequence Diagrams

Sequence diagrams are all about capturing the order of interactions between parts of
your system.

Participants in a Sequence Diagram:

04834580 Software Engineering (Honor Track) 2024-25 / Modeling 45 / 49



Sequence Diagrams: Events & Messages

An event is any point in an interaction where something occurs.

04834580 Software Engineering (Honor Track) 2024-25 / Modeling 46 / 49



Sequence Diagrams: Example

04834580 Software Engineering (Honor Track) 2024-25 / Modeling 47 / 49



Sequence Diagrams: Example

04834580 Software Engineering (Honor Track) 2024-25 / Modeling 48 / 49



References I

[1] Alain Abran, James W Moore, Pierre Bourque, Robert Dupuis, and L Tripp.
Software engineering body of knowledge.
IEEE Computer Society, Angela Burgess, 25:1235, 2004.

[2] Frederick Brooks and H Kugler.
No silver bullet.
April, 1987.

[3] Russ Miles and Kim Hamilton.
Learning UML 2.0: a pragmatic introduction to UML.
” O’Reilly Media, Inc.”, 2006.

04834580 Software Engineering (Honor Track) 2024-25 / Modeling 49 / 49


