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Mutation Testing

Definition (Mutation Testing [1])
A technique to assess the quality of a given test set, where faults are deliberately
seeded into the original program, by a simple syntactic change, to create a set of
faulty programs called mutants, each containing a different syntactic change. These
mutants are executed against the input test set to see if the seeded faults can be
detected.
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Mutation Testing Assumption

Definition (Competent Programmer Hypothesis [2])
The version of program produced by a competent programmer is close to the final
correct version of a program.
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Mutation Testing Example

Original Code:

def is_even(num):

return num % 2 == 0

Test Suite:

def test_is_even():

assert is_even(2) == True

assert is_even(3) == False
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Mutant Example: Incorrect Relational Operator

Mutated Code:

def is_even(num):

return num % 2 != 0

Test Results:

▶ test is even() fails because the mutant changes the behavior.

▶ Mutant is killed!
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Equivalent Mutants

Definition

A mutant is considered equivalent if it behaves the same as the original program for
every input.

Original Code:

if x > 0:

return 1

else:

return -1

Mutant:

if x > 0 and x != 0:

return 1

else:

return -1

▶ Both versions are semantically identical for all inputs. No test case can
distinguish them.

▶ Testers waste time and computational resources attempting to ”kill”
non-killable mutants.
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Mutation Coverage

Mutation Coverage:

Mutation Coverage =
Number of killed mutants

Total number of mutants

Mutation Coverage (Non-Equivalent Mutants):

Mutation Coverage =
Number of killed mutants

Total number of non-equivalent mutants
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