
04834580 Software Engineering (Honor Track) 2024-25

Mutation Testing

Sergey Mechtaev
mechtaev@pku.edu.cn

School of Computer Science, Peking University

mailto:mechtaev@pku.edu.cn


Mutation Testing

Definition (Mutation Testing [1])
A technique to assess the quality of a given test set, where faults are deliberately
seeded into the original program, by a simple syntactic change, to create a set of
faulty programs called mutants, each containing a different syntactic change. These
mutants are executed against the input test set to see if the seeded faults can be
detected.

04834580 Software Engineering (Honor Track) 2024-25 / Mutation Testing 2 / 9



Mutation Testing

Test
Suite

Mutation
Operators

Run Tests

Same Result (Alive) Different Result (Killed)

Program

Mutants

04834580 Software Engineering (Honor Track) 2024-25 / Mutation Testing 3 / 9



Mutation Testing Assumption

Definition (Competent Programmer Hypothesis [2])
The version of program produced by a competent programmer is close to the final
correct version of a program.

04834580 Software Engineering (Honor Track) 2024-25 / Mutation Testing 4 / 9



Mutation Testing Example

Original Code:

def is_even(num):

return num % 2 == 0

Test Suite:

def test_is_even():

assert is_even(2) == True

assert is_even(3) == False

04834580 Software Engineering (Honor Track) 2024-25 / Mutation Testing 5 / 9



Mutant Example: Incorrect Relational Operator

Mutated Code:

def is_even(num):

return num % 2 != 0

Test Results:

▶ test is even() fails because the mutant changes the behavior.

▶ Mutant is killed!

04834580 Software Engineering (Honor Track) 2024-25 / Mutation Testing 6 / 9



Equivalent Mutants

Definition

A mutant is considered equivalent if it behaves the same as the original program for
every input.

Original Code:

if x > 0:

return 1

else:

return -1

Mutant:

if x > 0 and x != 0:

return 1

else:

return -1

▶ Both versions are semantically identical for all inputs. No test case can
distinguish them.

▶ Testers waste time and computational resources attempting to ”kill”
non-killable mutants.

04834580 Software Engineering (Honor Track) 2024-25 / Mutation Testing 7 / 9



Mutation Coverage

Mutation Coverage:

Mutation Coverage =
Number of killed mutants

Total number of mutants

Mutation Coverage (Non-Equivalent Mutants):

Mutation Coverage =
Number of killed mutants

Total number of non-equivalent mutants

04834580 Software Engineering (Honor Track) 2024-25 / Mutation Testing 8 / 9



References I

[1] Yue Jia and Mark Harman.
An analysis and survey of the development of mutation testing.
IEEE transactions on software engineering, 37(5):649–678, 2010.

[2] Timothy A Budd, Richard J Lipton, Richard A DeMillo, and Frederick G
Sayward.
Mutation analysis.
Yale University. Department of Computer Science, 1979.

04834580 Software Engineering (Honor Track) 2024-25 / Mutation Testing 9 / 9


