
Program Analysis
Sergey Mechtaev

mechtaev@pku.edu.cn

Peking University

mailto:s.mechtaev@ucl.ac.uk


Understanding Program Behaviour

The goal of program analysis is checking that a software will run as we 
intended.

Definition (Semantics & semantic properties). The semantics of a 
program is a formal description of its runtime behaviours. Semantic 
property is any property about the runtime behaviour of the program.

Checking that a software will run as we intended = checking if this 
software satisfies a semantic property of interest.



Understanding Program Behaviour (Compilers)

Lexical Analysis

Syntactic Analysis

Semantic Analysis

Code Generation and 
Optimisation

Program (Source Code)

Grammatical structure 

Meaning 

Target program

charr x; char y;

y = 0.5

VALID SYNTAXT 

NOT VALID LEXEME 

y = 0.5

NOT VALID SEMANTIC (Char = Float)



Understanding Program Behaviour

For general reliability, we want to ensure that the software will not crash with 
abrupt termination. 

Possible scenarios Vehicle control software:

we want to ensure it will not 
drive them to an accidentSoftware that bookkeeps the 

ledger for crypto currency: 

we want to ensure it will not 
allow double spending

Software interacting with the 
outside world:

we want to ensure it will not be 
deceived to violate the host 

computer’s security

VIRUS

BUGGY WEB APPHOST SERVER

</></> 1500

3000

BUGGY SW

[SIGN RECOGNISED BY THE 
SELF-DRIVING CAR SW]

[EXPECTED]

[RETURNED]

[REAL SIGN]



Target Programs 

• Domain-specific analyses
• Analysis of embedded software (often safety-critical, but rarely use complex 

features of programming languages)

• Analysis of device drivers (rely on complex data structures and low-level 
operations, but typically are small in size)

• General-purpose program analyses
• Typically, incorporated inside compilers and IDEs

• Examples: analysis of buffer overruns 



Target Properties

• Safety properties state that a program will never exhibit a behaviour 
observable within finite time.
• Termination
• Computing a particular set of value
• Reaching an error state (integer overflows, buffer overruns, deadlocks, etc)

• Liveness properties state that a program will never exhibit a behaviour 
observable only after infinite time
• Non-termination

• Information flow properties state absence of dependencies between pairs 
of program behaviours
• In a web service, users should not be able to derive the credential of another user 

from the information they can access



Information flow property: Non-Interference

Only data flow from low-security level to high-security level is allowed:

It is a property that guarantees that a program does not leak secret data.

low output

e.g. password



Static vs Dynamic

Static analysis is the automated analysis of source code without 
executing the application.

Example: static typing

Dynamic analysis is the analysis of computer software that is 
performed by executing programs on a real or virtual processor.

Example: runtime checking if user assertions

float a = 1.2;

float b = a + “abc”; -> not allowed

num <- read input

assert (num>0);

Entered input: -2

Assertion failed: (num>0)



Ideal Program Analysis

Ideally, the program analysis is perfectly accurate iff for every program 𝑝 ∈ 𝐿, 
𝑎𝑛𝑎𝑙𝑦𝑠𝑖𝑠 𝑝 = 𝑡𝑟𝑢𝑒 ⇔ 𝑝 𝑠𝑎𝑡𝑖𝑠𝑓𝑖𝑒𝑠 𝑃.

Trace: sequence of execution states t= s0s1s2…

Property: set of infinite allowed traces

System: set of traces (program executions)

System S satisfies a property P iff all traces of S satisfy P



Theoretical Limitations

Rice Theorem. Let 𝐿 be a Turing-complete language, and let 𝑃 be a 
nontrivial semantic property of programs of 𝐿. There exists no 
algorithm such that for every program 𝑝 ∈ 𝐿, it return true iff 𝑝 satisfies 
the semantic property 𝑃.

Nontrivial property is a property that hold for some programs and not 
for others.

Conclusion: there is no ideal program analysis technique 



Approximation

Ideal and fully automated analysis is impossible due to the Rice 
theorem. Instead, decompose the property into:

ቊ
for every program 𝑝 ∈ 𝐿, 𝑎𝑛𝑎𝑙𝑦𝑠𝑖𝑠 𝑝 = 𝑡𝑟𝑢𝑒 ⇒ 𝑝 𝑠𝑎𝑡𝑖𝑠𝑓𝑖𝑒𝑠 𝑃

for every program 𝑝 ∈ 𝐿, 𝑎𝑛𝑎𝑙𝑦𝑠𝑖𝑠 𝑝 = 𝑡𝑟𝑢𝑒 ⇐ 𝑝 𝑠𝑎𝑡𝑖𝑠𝑓𝑖𝑒𝑠 𝑃



Soundness & Completeness

The program analyser 𝑎𝑛𝑎𝑙𝑦𝑠𝑖𝑠 is sound w.r.t. property 𝑃 whenever, 
for any program 𝑝 ∈ 𝐿, 𝑎𝑛𝑎𝑙𝑦𝑠𝑖𝑠 𝑝 = 𝑡𝑟𝑢𝑒 implies that 𝑝 satisfies 𝑃.

Example: strong typing

The program analyser 𝑎𝑛𝑎𝑙𝑦𝑠𝑖𝑠 is complete w.r.t. property 𝑃 
whenever, for any program 𝑝 ∈ 𝐿 such that 𝑝 satisfies 𝑃, 
𝑎𝑛𝑎𝑙𝑦𝑠𝑖𝑠 𝑝 = 𝑡𝑟𝑢𝑒

Example: runtime checking of user assertions 



Reality Vs Assessment

True negatives False negatives

False positives True positives

Desirables Violations

Reality

P
ro

p
er

ty
 A

ss
es

sm
en

t

Passed

Rejected

aka Accepted desirables

aka false alarms

aka missed violations

aka caught violations



Sound & Incomplete Analysis

True negatives

False positives True positives

Desirables Violations

Reality

P
ro

p
er

ty
 A

ss
es

sm
en

t

Passed

Rejected

aka Accepted desirables

aka false alarms aka caught violations



Complete & Not Sound Analysis 

True negatives False negatives

True positives

Desirables Violations

Reality

P
ro

p
er

ty
 A

ss
es

sm
en

t

Passed

Rejected

aka Accepted desirables aka missed violations

aka caught violations



Conservative Static Analysis

• Conservative static analysis is automatic, sound and incomplete
• Astree for embedded C code

• Facebook Infer for memory issues in C/C++/Java

• Julia for discovering security issues in Java programs

• Sparrow for memory errors in C programs



Bug Finding

• Bug finding approaches sacrifice both completeness and soundness
• Coverity (proprietary static code analysis tool from Synopsys)

• CodeSonar (static code analysis tool from GrammaTech)

• CBMC (Bounded Model Checker for C and C++ programs)



Relevant Literature

• Introduction to Static Analysis: An Abstract Interpretation 
Perspective
Xavier Rival and Kwangkeun Yi

• Soundness and Completeness: With Precision
Bertrand Meyer

• Principles of Secure Information Flow Analysis
Geoffrey Seward Smith


	Slide 1: Program Analysis
	Slide 2: Understanding Program Behaviour
	Slide 3: Understanding Program Behaviour (Compilers)
	Slide 4: Understanding Program Behaviour
	Slide 5: Target Programs 
	Slide 6: Target Properties
	Slide 7: Information flow property: Non-Interference
	Slide 8: Static vs Dynamic
	Slide 9: Ideal Program Analysis
	Slide 10: Theoretical Limitations
	Slide 11: Approximation
	Slide 12: Soundness & Completeness
	Slide 13: Reality Vs Assessment
	Slide 14: Sound & Incomplete Analysis
	Slide 15: Complete & Not Sound Analysis 
	Slide 16: Conservative Static Analysis
	Slide 17: Bug Finding
	Slide 18: Relevant Literature

