
Software Security
Sergey Mechtaev

mechtaev@pku.edu.cn

Peking University

mailto:s.mechtaev@ucl.ac.uk

What is Software Security?

• Protecting software from malicious attacks and unauthorized access.

• Ensuring confidentiality, integrity, and availability (CIA triad).

Common Types of Security Vulnerabilities:

• Injection Attacks

• Cross-Site Scripting (XSS)

• Memory Safety Vulnerabilities

• Security Misconfigurations

• ...

SQL Injection

Consider the following code that query database:

userName = request.getParameter("user");

statement = “SELECT * FROM users WHERE name = ‘ “ + user + “ ‘; “

executeQuery(statement)

3

SQL Injection

If an attacker enters the following as userName:

a';DROP TABLE users; SELECT * FROM userinfo WHERE 't' = ‘t

The resulting SQL statement will look as follows (deleting users and
stealing user data):

SELECT * FROM users WHERE name = 'a';DROP TABLE users; SELECT * FROM
userinfo WHERE 't' = 't';

4

Dynamic Taint Analysis

• Track information flow through a program at runtime

• Identify sources of taint – “TaintSeed”
• Untrusted input

• Sensitive data

• Taint Policy – “TaintTracker”
• Propagation of taint

• Identify taint sinks – “TaintAssert”
• Taint checking

• Special calls (jump statements, format strings)

• Outside network

5

Dynamic Taint Analysis

x = get_input()

…

y = x + 42

…

goto y

6

Input is

tainted

Dynamic Taint Analysis

x = get_input()

…

y = x + 42

…

goto y

7

– tainted

Shadow Memory

7

8

Memory

x

y

T

Shadow memory

Dynamic Taint Analysis

x = get_input()

…

y = x + 42

…

goto y

9

– tainted

Shadow Memory

7

49

10

Memory

x

y

T

T

Shadow memory

Dynamic Taint Analysis

x = get_input()

…

y = x + 42

…

goto y

11

– tainted

Policy

violation

detected

Issues of Tainting

x = get_input()

…

y = load(x)

…

goto y

12

Not tainting:

table indices can be

exploited by attackers

Tainting:

Some applications

dispatch based on provided

data (e.g. tcpdump)

Memory Safety Vulnerabilities

char buf[8];

int authenticated = 0;

void vulnerable() {

 gets(buf);

}

If the attacker can write 9 bytes of data to buf (with the
9th byte set to a non-zero value), then this will set the
authenticated flag to true, and the attacker will be
able to gain access.

Heartbleed (Vulnerability in OpenSSL, 2014)

Patch (Added Check)

if (1 + 2 + payload + 16 > s->s3-
>rrec.length)

return 0;

if (hbtype == 1) {
 …

Aliases

x and y are aliases if they point to the same memory cell.

&x – address of x

*x – dereferencing of x

𝑝 ≔ &𝑧 1;
[𝑧 ≔ 1]2;
[∗ 𝑝 ≔ 2]3;
[𝑝𝑟𝑖𝑛𝑡 𝑧]4;

Does the definition (z,2) reach 4?

When Aliasing Occurs?

• Using pointers
int *p, i;
p = &i;

• Call-by-reference, e.g. consider method void m(Object a, Object b)
m(x,x); // a and b alias in the body of m
m(x,y); // y and b alias in the body of m

• Array indexing, e.g. int i,j,a[100]
if 𝑖 = 𝑗 then 𝑎[𝑖] and 𝑎[𝑗] alias

Alias Analysis vs Points-to Analysis

Alias analysis computes a set of pair of variables 𝑥, 𝑦 where x and y
may (or must) point to the same memory location.

Points-to analysis computes a relation 𝑝𝑜𝑖𝑛𝑡𝑠_𝑡𝑜(𝑝, 𝑥) where 𝑝 may
(or must) point to the location of 𝑥.

Example 1: Optimisation with Pointer Analysis

𝑥 = 1;
∗ 𝑝 = 12;
𝑦 = 𝑥;

Is the variable x live at the exit of
the first statement?

Only if we can determine that p
must not point to x.

Then, the program can be
optimised into

∗ 𝑝 = 12;
𝑦 = 1;

Example 2: Detecting Security Vulnerabilities
With Pointer Analysis

void copyString(char *input) {
 char buffer[3];
 for (int i=0; i<=3; i++)
 buffer[i] = input[i];
 }
}

In C, array references are pointers:

 buffer[n] is *(buffer + n)

A pointer analysis can determine
that when executing this code,
buffer[3] may point to input[3]

buffer[3] is outside of our buffer

Example 3: Memory Management with
Pointer Analysis
Rust addresses memory safety (no dangling pointers, no double-free,
etc) through static analysis.

Rust’s approach: disallow both aliasing and mutation at the same time.

Reasoning: if an object is both aliased and modified, it can cause
difficulties. For example, destroying an object with multiple references
can create a dangling pointer.

Example 3: Memory Management with
Pointer Analysis
A borrower (v1) cannot access the resource after the owner (v) has destroyed it:

let v1: &Vec<i32>;

{

 let v = Vec::new();

 v1 = &v;

} //v is dropped here

v1.len(); //error:borrowed value does not live long enough

Example 3: Memory Management with
Pointer Analysis
Although there could be multiple shared references, there can only be one mutable
reference at one time:

let mut v:Vec<i32> = Vec::new();

let v1 = &mut v; //first mutable reference

let v2 = &mut v; //second mutable reference

v1.push(1); //error:cannot borrow `v` as mutable more than
once at a time

May vs Must Points-to Analysis

A sound must pointer analysis will return only those points-to relations
that will definitely hold in each possible execution of the program.

A sound may pointer analysis reports at least all points-to relations
that may occur, i.e. it is an over-approximation.

Andersen’s Points-to Analysis

Lars Ole Andersen. Program Analysis and Specialization for the C
Programming Language. PhD thesis, DIKU, University of Copenhagen,
1994

Flow- and context-insensitive analysis.

Represented by a set of rules of the form subset relations.

Constraints

Code Constraint

Referencing 𝑎 ≔ &𝑏 𝑏 ⊆ 𝑝𝑡(𝑎)

Aliasing 𝑎 ≔ 𝑏 𝑝𝑡(𝑏) ⊆ 𝑝𝑡(𝑎)

Dereferencing read 𝑎 ≔∗ 𝑏 𝑐 ⊆ 𝑝𝑡 𝑏 ⇒ 𝑝𝑡(𝑐) ⊆ 𝑝𝑡(𝑎)

Dereferencing write ∗ 𝑎 ≔ 𝑏 𝑐 ⊆ 𝑝𝑡 𝑎 ⇒ 𝑝𝑡(𝑏) ⊆ 𝑝𝑡(𝑐)

𝑝𝑡(𝑎) is the points-to set of a

Example 1

Program:
𝑎 ≔ &𝑏;
𝑐 ≔ 𝑎;
𝑎 ≔ &𝑑;
𝑒 ≔ 𝑎;

• Constraints:
𝑏 ⊆ 𝑝𝑡 𝑎
𝑝𝑡 𝑎 ⊆ 𝑝𝑡 𝑐
𝑑 ⊆ 𝑝𝑡 𝑎
𝑝𝑡(𝑎) ⊆ 𝑝𝑡(𝑒)

• Solution:
𝑝𝑡 𝑎 = 𝑏, 𝑑
𝑝𝑡 𝑐 = 𝑏, 𝑑
𝑝𝑡 𝑏 = 𝑝𝑡 𝑑 = ∅
𝑝𝑡 𝑒 = {𝑏, 𝑑}

Example 2

Program:
𝑎 ≔ &𝑏;
𝑐 ≔ &𝑑;
e ≔ &𝑎;
f ≔ a;
∗ 𝑒 ≔ c;

Solution:
𝑝𝑡 𝑎 = 𝑏, 𝑑
𝑝𝑡 𝑐 = 𝑑
𝑝𝑡 𝑒 = 𝑎
𝑝𝑡 𝑓 = {𝑏, 𝑑}

Constraints:
𝑏 ⊆ 𝑝𝑡 𝑎
{d} ⊆ 𝑝𝑡 𝑐
𝑎 ⊆ 𝑝𝑡 𝑒
𝑝𝑡 𝑎 ⊆ 𝑝𝑡 𝑓
𝑧 ⊆ 𝑝𝑡 𝑒 ⇒ 𝑝𝑡(𝑐) ⊆ 𝑝𝑡(𝑧)

Generated constraint:
𝑝𝑡(𝑐) ⊆ 𝑝𝑡(𝑎)

As Graph Algorithm

• Can be formalised as a graph transitive closure computation

• Each statement updates the points-to graph if it can creates new
points-to relationship

Statement p:=&a

Add an arc from p to a, showing p can possibly point to a:

p a

Statement p:=q

Add an arc from p to everything q points to. If new arcs from q are later
added, corresponding arcs from p must also be added (iterative fixed
point computation):

p a

b q

c

Statement p:=*r

Let S be all the nodes r points to. Let T be all the nodes members of S
point to. We add arcs from p to all nodes in T. If later pointer
assignments increase S or T, new arcs from p must also be added:

p a

b
f

c

r

e

d

Statement *p = q

Nodes pointed to by p must be linked to all nodes pointed to by q. If
later pointer assignments add arcs from p or q, this assignment must
be revisited:

p r

s f

c

q

e

Exercise

• Show that Andersen's analysis concludes for this code that D may
point to C.

• Argue that for any program that has this set of assignments, no
matter which control flow exists between them, D never points to C in
any execution.

A = &C;
C = &B;
B = &A;
B = A;
*B = C;
D = *A;

	Slide 1: Software Security
	Slide 2: What is Software Security?
	Slide 3: SQL Injection
	Slide 4: SQL Injection
	Slide 5: Dynamic Taint Analysis
	Slide 6: Dynamic Taint Analysis
	Slide 7: Dynamic Taint Analysis
	Slide 8: Shadow Memory
	Slide 9: Dynamic Taint Analysis
	Slide 10: Shadow Memory
	Slide 11: Dynamic Taint Analysis
	Slide 12: Issues of Tainting
	Slide 13: Memory Safety Vulnerabilities
	Slide 14: Heartbleed (Vulnerability in OpenSSL, 2014)
	Slide 15: Aliases
	Slide 16: When Aliasing Occurs?
	Slide 17: Alias Analysis vs Points-to Analysis
	Slide 18: Example 1: Optimisation with Pointer Analysis
	Slide 19: Example 2: Detecting Security Vulnerabilities With Pointer Analysis
	Slide 20: Example 3: Memory Management with Pointer Analysis
	Slide 21: Example 3: Memory Management with Pointer Analysis
	Slide 22: Example 3: Memory Management with Pointer Analysis
	Slide 23: May vs Must Points-to Analysis
	Slide 24: Andersen’s Points-to Analysis
	Slide 25: Constraints
	Slide 26: Example 1
	Slide 27: Example 2
	Slide 28: As Graph Algorithm
	Slide 29: Statement p:=&a
	Slide 30: Statement p:=q
	Slide 31: Statement p:=*r
	Slide 32: Statement *p = q
	Slide 33: Exercise

