Testing

Sergey Mechtaev

Testing

* An error is a deviation of the observed behavior from the
required (desired) behavior
* Functional requirements (e.g., user-acceptance testing)
* Nonfunctional requirements (e.g., performance testing)

* Testing Is the process of executing a program with the intent of
finding errors
* Development testing
* Release testing
e User testing

Limitation of Testing

Testing can only show the presence of bugs, not their absence. —
E.W. Dijkstra

Development Testing

Integ ration

Tests Systﬂm
Tests

Unit
Tests

Unit Testing

* Testing individual subsystems (collection of classes)

Detailed design
model

Subsystem ‘
_ code _ _
* Goal: Confirm that subsystem is correctly coded and carries out

the intended functionalities

Integration Testing

* Testing groups of subsystems and eventually the entire system

Software
architecture

Subsystem

code _
Integration

test
Subsystem

code
* Goal: Test interfaces between subsystems

System Testing

* Testing the entire system

Requirements
specification

Entire
system

* Goal: Determine if the system meets the requirements
(functional and non-functional)

White-box (Structural) Testing

e Statement coverage
* Branch coverage
* Path coverage

Basic Blocks

public void sort(int[] a) {

if

(a == null || a.length 4 2)

return;

in
fo

}
if

t 1;

r(1i=0f i<a.1engtd—1;

1++) {

| -

ifka[i] < al[iH1])

break

(1 >= a.length -

return;

1)

gsort(a, O, a.lengqh);

Definition. Basic block is a
sequence of statements that
* has one entry point

* has one exit point

Control Flow Graph

Entry
public void sort(int[] a) { I
if(a == null || a.length < 2) 2 7 NULL [@ length < 2
False True
retuzrn, & g
:) 1=0, return;
int 1, I
for(i=0; i<a.length-1; i++) { — 1 <a.length -1
I
if(a[i] < a[i+1]) e
a[i] < a[i+1] False
break; | |
Fé\lllfe T:llje
} i++; break;
if(i > a.length - 1) I
return; 1:>?1a@ﬂ1—}
False True
gsort(a, @, a.length); Y L
gsort(a, @, a.length); return;
; J

Exit

Statement Coverage

Number of executed statements

Statement Coverage =
5 Total number of statements

Statement Coverage

Coverage for the input
a=[3,7,5]

Executes 7 out of 10 blocks, so
statement coverage is 70%

Entry

|}

a == NULL || a.length < 2

False

|
als
v

i=20;

U

%

i <a.length -1

I
True
N/

a[i] < a[i+1]

|
False

I
True

I
True
N2

return;

N2 N2
— i++; break;
N
i > a.length - 1
Fallse Trlue
N2 N2
gsort(a, @, a.length); return;
N

Exit

Statement Coverage

* We can achieve 100%
statement coverage with three
test cases

e 9= : 1]
ca=|[57]
ca=[7,5] (bug)

Entry

L

a == NULL || a.length < 2

False

|
als
v

i=20;
|}

— 1 < a.length - 1

I
True
N/

a[i] < a[i+1]
T T

False True

I
True
N2

return;

N2 N2
1+ break;
J
i > a.length - 1
Fallse Trlue
N2 N2
gsort(a, @, a.length),; return;

Exit

Branch Coverage

Number of executed branches

B h C =
ranch L.overage Total number of branches

Branch Coverage
e Consider the input
a=[3,7,5]

* This single test case executes
4 out of 8 branches

* Branch coverage: 50%

Entry
J
a = NULL || a.length < 2
Fallse TrLe
\ v
i=0; return;
L
—~ 1 < a.length -1
Trlue
\
a[i] < a[i+1] Fal
| |
False True
N i
— 1++; break;
N
i > a.length - 1
| |
False True
\ \
gsort(a, @, a.length); return;
J

Exit

Statement vs Branch Coverage

Which of the following statements are true?

100% statement coverage implies 100% branch coverage
N% statement coverage implies at least N% branch coverage
100% branch coverage implies 100% statement coverage
N% branch coverage implies at least N% statement coverage

S N =

Path Coverage

int foo(boolean a, Entry
boolean b) {
int x = 1;
int y = 1;
it (a)
X = 0;
else
y = 0;
it (b) b
return 5 / X; '

[
true False
N2 N

< X
1
=

else return 5/x; return 5/y;

return 5 / vy,

} Exit

Path Coverage

We can achieve 100% branch
coverage with two test cases:

e a = true, b = false
e a = false, b = true

The test cases do not detect
the bug!

Entry

< X
o
[

b

rue
N2 N2

[
False

return 5/x;

return 5/y,;

Exit

Path Coverage

We can achieve 100% path

coverage with four test cases:

e a =true, b = false
e a = false, b = true
* a =true, b = true

e a = false, b = false

The two additional test cases
detect the bugs

Entry

< X
nou
(RGN

b

true False
N2 N

return 5/x;

return 5/y,

Exit

Mutation Testing

Learning from mistakes:

Problem. How good is the program tested?

Technique. Simulate earlier mistakes and see whether the
resulting defects are found

Mutation Testing

int f(int x, int y) {

S if(x <y)
=) return x+y;
= else
O return x*y;
}
int f(int x, int y) {
t- if(x <y
@ retur ;
- else
=

return x*y;

int a = f(5, 10);
assertEquals(a, 15);

4

int a = f(5, 10),;
assertEquals(a, 15);

X

Mutant killed

21

	COMP0010 Software Engineering Testing
	Testing
	Limitation of Testing
	Development Testing
	Unit Testing
	Integration Testing
	System Testing
	White-box (Structural) Testing
	Basic Blocks
	Control Flow Graph
	Statement Coverage
	Statement Coverage (2)
	Statement Coverage (3)
	Branch Coverage
	Branch Coverage (2)
	Statement vs Branch Coverage
	Path Coverage
	Path Coverage (2)
	Path Coverage (3)
	Mutation Testing
	Mutation Testing (2)

