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Testing

* An error is a deviation of the observed behavior from the
required (desired) behavior
* Functional requirements (e.g., user-acceptance testing)
* Nonfunctional requirements (e.g., performance testing)

* Testing Is the process of executing a program with the intent of
finding errors
* Development testing
* Release testing
e User testing



Limitation of Testing

Testing can only show the presence of bugs, not their absence. —
E.W. Dijkstra
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Unit Testing

* Testing individual subsystems (collection of classes)

Detailed design
model

Subsystem ‘
_ code _ _
* Goal: Confirm that subsystem is correctly coded and carries out

the intended functionalities



Integration Testing

* Testing groups of subsystems and eventually the entire system
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code
* Goal: Test interfaces between subsystems




System Testing

* Testing the entire system

Requirements
specification

Entire
system

* Goal: Determine if the system meets the requirements
(functional and non-functional)



White-box (Structural) Testing

e Statement coverage
* Branch coverage
* Path coverage



Basic Blocks

public void sort(int[] a) {

if

(a == null || a.length 4 2)

return;
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return;
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gsort(a, O, a.lengqh);

Definition. Basic block is a
sequence of statements that
* has one entry point

* has one exit point



Control Flow Graph
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Statement Coverage

Number of executed statements

Statement Coverage =
5 Total number of statements



Statement Coverage

Coverage for the input
a=[3,7,5]

Executes 7 out of 10 blocks, so
statement coverage is 70%
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Statement Coverage

* We can achieve 100%
statement coverage with three
test cases

e 9= : 1 ]
ca=|[57]
ca=[7,5] (bug)
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Branch Coverage

Number of executed branches

B h C =
ranch L.overage Total number of branches



Branch Coverage
e Consider the input
a=[3,7,5]

* This single test case executes
4 out of 8 branches

* Branch coverage: 50%
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Statement vs Branch Coverage

Which of the following statements are true?

100% statement coverage implies 100% branch coverage
N% statement coverage implies at least N% branch coverage
100% branch coverage implies 100% statement coverage
N% branch coverage implies at least N% statement coverage

S N =



Path Coverage

int foo(boolean a, Entry
boolean b) {
int x = 1;
int y = 1;
it (a)
X = 0;
else
y = 0;
it (b) b
return 5 / X; '

[
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N2 N

< X
1
=

else return 5/x; return 5/y;

return 5 / vy,

} Exit




Path Coverage

We can achieve 100% branch
coverage with two test cases:

e a = true, b = false
e a = false, b = true

The test cases do not detect
the bug!
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return 5/x;
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Path Coverage

We can achieve 100% path

coverage with four test cases:

e a =true, b = false
e a = false, b = true
* a =true, b = true

e a = false, b = false

The two additional test cases
detect the bugs
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Mutation Testing

Learning from mistakes:

Problem. How good is the program tested?

Technique. Simulate earlier mistakes and see whether the
resulting defects are found



Mutation Testing

int f(int x, int y) {

S if(x <y)
=) return x+y;
= else
O return x*y;
}
int f(int x, int y) {
t- if(x <y
@ retur ;
- else
=

return x*y;

int a = f(5, 10);
assertEquals(a, 15);

4

int a = f(5, 10),;
assertEquals(a, 15);

X

Mutant killed

21
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