
04834580 Software Engineering (Honor Track) 2024-25

UNIX Environment

Sergey Mechtaev
mechtaev@pku.edu.cn

School of Computer Science, Peking University

mailto:mechtaev@pku.edu.cn

What is the diff utility?

▶ diff [1] is a command-line tool used to compare two text files line by line.

▶ It outputs the differences between the files in a readable format.

▶ Common application: version control, identifying changes between program
versions.

04834580 Software Engineering (Honor Track) 2024-25 / UNIX Environment 2 / 40

Syntax of diff

The basic syntax of the diff command:

Syntax

diff [options] file1 file2

Common options:

▶ diff -u: Produces output in Unified Diff format (preferred for readability).

▶ diff -c: Produces output in Context Diff format.

04834580 Software Engineering (Honor Track) 2024-25 / UNIX Environment 3 / 40

Example Using diff

Let’s compare two files, file1.txt and file2.txt:
Contents of file1.txt:

apple

banana

cherry

date

Contents of file2.txt:

apple

blueberry

cherry

date

Running diff file1.txt file2.txt produces:

2c2

< banana

> blueberry

04834580 Software Engineering (Honor Track) 2024-25 / UNIX Environment 4 / 40

What is Unified Diff Format?

▶ Unified Diff is a compact and readable format for showing file differences.

▶ Used extensively in version control systems like Git.

▶ Highlights context lines along with changes.

Key Elements of Unified Diff

▶ @@: Denotes the location of changes in the file.

▶ +: Lines added.

▶ -: Lines removed.

04834580 Software Engineering (Honor Track) 2024-25 / UNIX Environment 5 / 40

Unified Diff Example

Using diff -u file1.txt file2.txt produces:

--- file1.txt

+++ file2.txt

@@ -1,4 +1,4 @@

apple

-banana

+blueberry

cherry

date

Explanation:

▶ --- file1.txt: Original file.

▶ +++ file2.txt: Changed file.

▶ - banana: Indicates ”banana” was removed.

▶ + blueberry: Indicates ”blueberry” was added.

04834580 Software Engineering (Honor Track) 2024-25 / UNIX Environment 6 / 40

More Complex Unified Diff Example

Contents of file1.txt:

apple

banana

cherry

date

elderberry

fig

grape

Contents of file2.txt:

apple

blueberry

cherry

dragonfruit

elderberry

grape

04834580 Software Engineering (Honor Track) 2024-25 / UNIX Environment 7 / 40

More Complex Unified Diff Example

Running diff -u outputs:

--- file1.txt

+++ file2.txt

@@ -1,7 +1,6 @@

apple

-banana

+blueberry

cherry

-date

+dragonfruit

elderberry

-fig

grape

04834580 Software Engineering (Honor Track) 2024-25 / UNIX Environment 8 / 40

Interpreting Unified Diff Output

Key observations:

▶ Context lines (”apple”, ”cherry”, etc.) provide surrounding unchanged text
for reference.

▶ Removed lines are prefixed with ”-”.

▶ Added lines are prefixed with ”+”.

▶ ”@@” block indicates where changes occur in the original file.

04834580 Software Engineering (Honor Track) 2024-25 / UNIX Environment 9 / 40

Applying a Patch

Command

patch < patch-file

▶ Reads the input patch-file and applies changes to the appropriate original file.

▶ Use the --dry-run option to simulate patching without actually making
changes:

patch --dry-run < patch-file

04834580 Software Engineering (Honor Track) 2024-25 / UNIX Environment 10 / 40

Example of diff and patch

Suppose original.txt has:

Original Content

Hello, World!

This is a test file.

modified.txt has:

Modified Content

Hello, Universe!

This is a test file.

Generate the patch file:

Command

diff -u original.txt modified.txt > patch.txt

04834580 Software Engineering (Honor Track) 2024-25 / UNIX Environment 11 / 40

Applying the Patch

To update original.txt to match modified.txt:

Command

patch original.txt < patch.txt

After applying the patch, original.txt will now contain:

Result

Hello, Universe!

This is a test file.

04834580 Software Engineering (Honor Track) 2024-25 / UNIX Environment 12 / 40

Myers’ Algorithm

▶ Designed by Eugene Myers in 1986 [2].

▶ Efficient algorithm to find the minimum edit script using a graph-based
approach.

▶ Analyzes edit graph where all paths from (0, 0) to (m, n) represent
transformations.

04834580 Software Engineering (Honor Track) 2024-25 / UNIX Environment 13 / 40

Edit Graph

▶ Construct a 2D grid:
▶ Rows correspond to characters of String A.
▶ Columns correspond to characters of String B.

▶ For each cell (i , j) in the matrix where i > 0 and j > 0, calculate the edit
distance from A[0 : i] to B[0 : j] using the following rules:
▶ If A[i − 1] equals B[j − 1], the value at (i , j) is the same as the value at

(i − 1, j − 1) (no edit needed).
▶ If A[i − 1] is not equal to B[j − 1], the value at (i , j) is the minimum of:

▶ The value above (i − 1, j) plus 1 (deletion in A).
▶ The value to the left (i , j − 1) plus 1 (insertion in A).
▶ The value diagonally above-left (i − 1, j − 1) plus 1 (substitution or mismatch).

04834580 Software Engineering (Honor Track) 2024-25 / UNIX Environment 14 / 40

Edit Graph

0,0

B[1]

A[1]

B[2]

A[2]

B[3]

A[3]

B[4]

A[4]

B[5]

A[5]

04834580 Software Engineering (Honor Track) 2024-25 / UNIX Environment 15 / 40

What is a Snake?

▶ A snake is a diagonal segment of the edit graph where no operations are needed
(matching characters).

▶ Myers’ algorithm extends paths using snakes whenever possible to reduce
computation.

B[1]

A[1]

B[2]

A[2]

B[3]

A[3]

B[4]

A[4]

B[5]

A[5]

04834580 Software Engineering (Honor Track) 2024-25 / UNIX Environment 16 / 40

Finding the Shortest Edit Path

▶ Myers’ algorithm divides the problem into diagonal bands, making it efficiently
find the shortest path.

▶ Diagonal k represents i − j = k .

Diagonal bands

04834580 Software Engineering (Honor Track) 2024-25 / UNIX Environment 17 / 40

Complexity

▶ Myers’ algorithm runs in O(N × D), where:
▶ N: Length of the strings.
▶ D: Length of the shortest edit script.

▶ Efficient for real-world applications such as ‘diff‘ and ‘git diff‘.

04834580 Software Engineering (Honor Track) 2024-25 / UNIX Environment 18 / 40

The Make Utility

▶ make [3] is a build automation tool used in Unix/Linux systems.

▶ It is used for compiling programs and managing dependencies.

▶ A Makefile defines build rules, dependencies, and commands.

04834580 Software Engineering (Honor Track) 2024-25 / UNIX Environment 19 / 40

Basic Syntax of a Makefile

A Makefile consists of:

▶ Rules: Specify targets, dependencies, and commands.

▶ Variables: Represent reusable values.

▶ Patterns: Define generic build rules.

Syntax of a rule:

target: dependencies

command

04834580 Software Engineering (Honor Track) 2024-25 / UNIX Environment 20 / 40

Semantics of Rules

▶ Target: The file or action to create/update.

▶ Dependencies: Files required to build the target.

▶ Command: Shell commands executed to build or update the target.

Example:

output.txt: input.txt

cat input.txt > output.txt

Explanation:

▶ output.txt is the target.

▶ input.txt is the dependency.

▶ The command concatenates the contents of input.txt and writes them to
output.txt.

04834580 Software Engineering (Honor Track) 2024-25 / UNIX Environment 21 / 40

Using Variables in Makefile

Variables provide reusable values in Makefiles.
Example:

CC = gcc

CFLAGS = -Wall

program: program.c

$(CC) $(CFLAGS) -o program program.c

Explanation:

▶ CC sets the compiler (gcc).

▶ CFLAGS defines compiler flags (-Wall for all warnings).

▶ $(CC) and $(CFLAGS) are expanded during execution.

04834580 Software Engineering (Honor Track) 2024-25 / UNIX Environment 22 / 40

Pattern Rules in Makefile

Pattern rules define generic build instructions.
Example:

%.o: %.c

gcc -c $< -o $@

Explanation:

▶ %.o: Target file pattern (object files).

▶ %.c: Dependency file pattern (source files).

▶ $<: The first dependency (a .c file).

▶ $@: The target (an .o file).

▶ Compiles .c files into .o files using the gcc compiler.

04834580 Software Engineering (Honor Track) 2024-25 / UNIX Environment 23 / 40

Phony Targets

Phony targets represent actions, not real files.
Example:

.PHONY: clean

clean:

rm -f *.o program

Explanation:

▶ .PHONY marks clean as a phony target.

▶ clean will force make to execute the command even if a file named clean

exists.

▶ Command removes object files and the compiled program.

04834580 Software Engineering (Honor Track) 2024-25 / UNIX Environment 24 / 40

Understanding Dependencies

Example:

all: program

program: program.o utils.o

gcc -o program program.o utils.o

program.o: program.c

gcc -c program.c -o program.o

utils.o: utils.c

gcc -c utils.c -o utils.o

Explanation:

▶ all target depends on program.

▶ program depends on object files program.o and utils.o.

▶ program.o depends on program.c.

▶ utils.o depends on utils.c.

04834580 Software Engineering (Honor Track) 2024-25 / UNIX Environment 25 / 40

What is awk?

▶ awk [4] is a powerful text processing utility in Unix/Linux.

▶ It is primarily used for pattern matching, processing, and reporting on data.

▶ awk is a programming language as well, with features like:
▶ Variables
▶ Conditionals
▶ Loops

▶ Commonly used for tasks such as:
▶ Extracting columns of data
▶ Filtering content based on patterns
▶ Performing calculations on data

04834580 Software Engineering (Honor Track) 2024-25 / UNIX Environment 26 / 40

Basic Syntax of awk

The basic syntax of an awk command is:

Syntax

awk 'pattern action ' inputfile

▶ pattern: A condition to match (e.g., a regex or logical test).

▶ action: Block of code to execute when the pattern matches.

▶ If no pattern is specified, the action is applied to all lines.

▶ If no action is specified, matching lines are printed by default.

04834580 Software Engineering (Honor Track) 2024-25 / UNIX Environment 27 / 40

Components of awk

▶ Patterns:
▶ Define when an action should be applied.
▶ Patterns can include:

▶ Regular expressions.
▶ Relational expressions (e.g., $1 > 10).
▶ Logical expressions (e.g., $1 > 10 && $2 < 5).

▶ Actions:
▶ Specify operations to perform when the pattern matches.
▶ Actions are enclosed in curly braces {}.
▶ Commonly used actions:

▶ Print fields using print.
▶ Perform calculations.
▶ Modify fields.

▶ Special Patterns:
▶ BEGIN: Executes before reading any input.
▶ END: Executes after processing all input.

04834580 Software Engineering (Honor Track) 2024-25 / UNIX Environment 28 / 40

Example 1: Printing Specific Columns

Input File (data.txt):

John 25 5000

Alice 30 6000

Bob 22 4500

Command to print the first and third columns:

awk '{ print $1 , $3 }' data.txt

Output:

John 5000

Alice 6000

Bob 4500

04834580 Software Engineering (Honor Track) 2024-25 / UNIX Environment 29 / 40

Example 2: Filtering Rows

Input File (data.txt):

John 25 5000

Alice 30 6000

Bob 22 4500

Command to filter rows where the age is greater than 23:

awk '$2 > 23 { print $0 }' data.txt

Output:

John 25 5000

Alice 30 6000

04834580 Software Engineering (Honor Track) 2024-25 / UNIX Environment 30 / 40

Example 3: BEGIN and END

Command to calculate and print the sum of the third column in data.txt:

awk 'BEGIN { sum = 0 }

{ sum += $3 }

END { print "Total:", sum }' data.txt

Output:

Total: 15500

Explanation:

▶ BEGIN: Initialize the variable sum to 0.

▶ { sum += $3 }: Add the value of the third field to sum.

▶ END: Print the final result.

04834580 Software Engineering (Honor Track) 2024-25 / UNIX Environment 31 / 40

Example 4: Using Regular Expressions

Input File (log.txt):

192.168.1.1 - - [01/ Jan /2023] "GET /index.html" 200

192.168.1.2 - - [01/ Jan /2023] "POST /login" 403

192.168.1.3 - - [01/ Jan /2023] "GET /about.html" 200

Command to print lines containing GET requests:

awk '/GET/ { print $0 }' log.txt

Output:

192.168.1.1 - - [01/ Jan /2023] "GET /index.html" 200

192.168.1.3 - - [01/ Jan /2023] "GET /about.html" 200

04834580 Software Engineering (Honor Track) 2024-25 / UNIX Environment 32 / 40

What is jq?

▶ jq [5] is a lightweight and flexible command-line JSON processor.

▶ It allows you to query, transform, and format JSON data.

▶ Works by applying filters to JSON data—like SQL for JSON!

04834580 Software Engineering (Honor Track) 2024-25 / UNIX Environment 33 / 40

Basic Syntax

Syntax: jq ’<filter>’ <file.json>

▶ Filters are expressions that process the JSON input and output the result.

▶ Example:

$ echo '{"name": "Alice", "age": 25}' | jq '.name'
"Alice"

04834580 Software Engineering (Honor Track) 2024-25 / UNIX Environment 34 / 40

Accessing JSON Data

▶ Use .key to access JSON object properties.

▶ Use .[index] to access elements in arrays.

▶ Example:

$ echo '[{" name": "Alice"}, {"name": "Bob "}]' | jq '.[0].
name'

"Alice"

04834580 Software Engineering (Honor Track) 2024-25 / UNIX Environment 35 / 40

Filters

▶ Filters are the core feature of jq. They transform JSON data.

▶ Example: Extracting all names from an array.

$ echo '[{" name": "Alice"}, {"name": "Bob "}]' | jq '.[] | .

name'
"Alice"

"Bob"

04834580 Software Engineering (Honor Track) 2024-25 / UNIX Environment 36 / 40

Advanced Features

▶ Use pipes | to chain filters.

$ echo '{"a":1,"b":2}' | jq '. | .a'
1

▶ Use select() for conditional extraction.

$ echo '[1,2,3,4]' | jq '.[] | select (. > 2)'
3

4

▶ Use map() for array transformation.

$ echo '[1,2,3]' | jq 'map(. * 2)'
[2,4,6]

04834580 Software Engineering (Honor Track) 2024-25 / UNIX Environment 37 / 40

Built-in Functions

▶ length: Get the length of an array or string.

$ echo '[1,2,3]' | jq 'length '
3

▶ keys: Return keys of an object.

$ echo '{"a":1,"b":2}' | jq 'keys'
["a", "b"]

04834580 Software Engineering (Honor Track) 2024-25 / UNIX Environment 38 / 40

References I

[1] Free Software Foundation.
Gnu diffutils.
https://www.gnu.org/software/diffutils/, 2025.

[2] Eugene W Myers.
An o (nd) difference algorithm and its variations.
Algorithmica, 1(1):251–266, 1986.

[3] Free Software Foundation.
Gnu make.
https://www.gnu.org/software/make/, 2025.

[4] Free Software Foundation.
Gawk.
https://www.gnu.org/software/gawk/, 2025.

04834580 Software Engineering (Honor Track) 2024-25 / UNIX Environment 39 / 40

https://www.gnu.org/software/diffutils/
https://www.gnu.org/software/make/
https://www.gnu.org/software/gawk/

References II

[5] jq Developers.
jq is a lightweight and flexible command-line json processor.
https://jqlang.org/, 2025.

04834580 Software Engineering (Honor Track) 2024-25 / UNIX Environment 40 / 40

https://jqlang.org/

	Unified Diff Format (Unidiff)
	The Snake and Shortest Paths

