Verification

Sergey Mechtaev
Peking University
mechtaev@pku.edu.cn

© Sergey Mechtaev (UCL) 2019

Formal Verification

Definition. The act of proving or disproving the
correctness of intended algorithms underlying a
system with respect to a certain formal

specification or property.

Program

Specification ——

© Sergey Mechtaev (UCL) 2019

Verifier

—> Right or wrong

Applications

« Safety-critical systems (e.g. medical software,
nuclear reactor controllers, autonomous
vehicles)

» Core system components (e.g. device drivers)

» Security (e.g. ATM software, cryptographic
algorithms)

» Hardware verification (e.g. processors)

© Sergey Mechtaev (UCL) 2019

Hoare Triple

* Cis a program
* P and Q are predicates over program variables

* Hoare triple: given a state that satisfies
oreconditions P, executing a program C results
In a state that satisfies postconditions Q:

P; C {0}
 Example: {x 2 0} x ==x+ 1 {x > 0}

© Sergey Mechtaev (UCL) 2019

* The meaning of {P} C {Q} is as follows:
* |[f we begin executing c in a state satisfying P,
« and if C terminates,
« then its final state will satisfy Q

* The specification says nothing about:

« Executions that do not terminate (i.e., diverge)
» Executions that do not begin in P

 Goal of verification: prove that {P} C {Q} is valid

© Sergey Mechtaev (UCL) 2019

 Total correctness is a stronger statement,

written:
[P]C [Q]

* The meaning of [P]C [Q] is:
* |f we begin executing C in a state satisfying P,
* then c terminates,
« and its final state will satisfy Q

* Total correctness introduces another obligation
for verification

© Sergey Mechtaev (UCL) 2019

Examples

 {true} C {Q} — if C terminates, then Q holds

© Sergey Me

true] C [Q] — C terminates, and Q always
nolds after

P] C [true] — If C starts in P, then C terminates
true] C [true]| — C terminates

{x > 0}while0 < xdox:= x + 1{false}—
C does not terminate when startingin x>0

{true} C {false} — C does not terminate

chtaev (UCL) 2019

Poll: Is the following a valid
Hoare triple?

* {x = 2}whilex > 0do x :=x — 1{x = 0}
{x=0ANy=1}lx=x+1{x=1ANy=2}
e {true} whilex >0dox:=x—1{x <0}

o [true|lwhile x > 0dox :=x+1[x < 0]

© Sergey Mechtaev (UCL) 2019

Hoare Logic: Assignments

» Hoare Logic is a logic for deriving new triples
from existing ones

* The rule for assignment statements:
ASGN

Qla/x]} x := a{Q}
* Read Q[a/x] as “Q with a substituted for x”

« Examples:

U =ylx:=1{x =y}
c{x+1=nlx:=x+1{x=n}

© Sergey Mechtaev (UCL) 2019

Hoare Logic: Strengthening

* The rule for precondition strengthening:
SIS {P'1c{Q} P=P

P3C{Q}
« Example: proving that {true} x := 1 {x = 1}

ASGN true=>1=1

DRE {1=1}x :=1{x = 1}

{true}x = 1{x = 1}

© Sergey Mechtaev (UCL) 2019

10

Hoare Logic: Weakening

* The rule for weakening the postcondition:

(PICLQ'y Q'=Q
P3C{Q}

* The rule for consequence (combines PRE and

POSU b eie) @' s
: !/ !/ 14 /:
CONSEQ {P}C{Q}

POST

© Sergey Mechtaev (UCL) 2019 11

Hoare Logic: Composition

 Given triples for C; and C, , this gives us one

(P}ICHP} {P}C{Q)

e Gl

© Sergey Mechtaev (UCL) 2019

12

Example: proving correctness
of swap

cASGN: {x=x'Ay=y'}t:=x{t=x'"ANy =1y}
c ASGN: {t=x'"Ay=y}x=y{t=x Ax =y}
c ASGN: {t=x'"Ax=y'}y=t{y=x Ax =y}
« SEQ (1,2):
x=x"Any=y'}
t:i=x;X:=Yy
ft=x'"Ax =Yy}
« SEQ (3,4):
x=x"ANy=y'}
Li=x,x: =Y,y =1
y=x"Ax=y}

© Sergey Mechtaev (UCL) 2019

13

Hoare Logic: Conditional

* Proving: if B then C; else C,

At the beginning of the true branch, we know
that B holds, in the false branch, =B must hold:

" (P AB}C11Q} {P A=Bj(510}
{P}if B then C; else C,{Q}

© Sergey Mechtaev (UCL) 2019 14

Hoare Logic: While Loop

* To prove triples for loops, we need loop
invariant (condition that holds before the loop,
and is preserved by each iteration)

(P AB}C {P)
(P} while B do C {P A =B}

WHILE

© Sergey Mechtaev (UCL) 2019 1 5

Example: loop invariant

* Want to prove that
{true}
r:=x;q:=0;

whiley <rdor:=r—y;q:==q +1
f[r<yAx=1r+(qXy)}

» Guess loop invariant:

P:x=r+(qgXy)

© Sergey Mechtaev (UCL) 2019

16

Example: loop invariant

* We are obligated to show that

x=r+@xy)ANy <r}
r=r—y,;q=q+1

x=r+(@Xy)}
c{x=r+@+1)Xxylg=q+1{x=r+qg Xy}
c{x=r—y+ @+ Xylri=r—y{x=r+
(@ +1) Xy}
cx=r+(@Xy)Ay<r=
x=r—y+((@q@+1)Xy

© Sergey Mechtaev (UCL) 2019

17

Java Modeling Language (JML)

//@ requires @ < amount && amount + balance < MAX_
BALANCE;

//@ ensures balance == \old(balance) + amount;
public void credit(final int amount) {
this.balance += amount;

}

//@ requires 0 < amount && amount <= balance;

//@ ensures balance == \old(balance) - amount;

public void debit(final int amount) {
this.balance -= amount;

}

© Sergey Mechtaev (UCL) 2019

18

» Given an assertion Q and program C, we'll
describe a function:

« That is a predicate transformer: produces another
assertion

 Assertion for the corresponding precondition P for C
* P guaranteed to be the weakest such assertion

* This is the weakest precondition predicate
transformer wp(C, Q):
* The triple {wp(C,Q)} C {Q} is valid
* For any P where {P}c {Q}is valid, P = wp(c, Q)

© Sergey Mechtaev (UCL) 2019 1 9

Strongest Postcondition

* The strongest postcondition predicate
transformer sp(C, P):
* The triple {P} C {sp(C, P)}is valid
« For any Q where {P} C {Q}is valid, sp(C,P) = Q

« Can be computed using symbolic execution
(e.g. start symbolic execution with path
condition P)

© Sergey Mechtaev (UCL) 2019

20

Verification Condition

Definition. A logical formula such that its validity
means some aspect of program correctness.

To check {P}C{Q}, weakest precondition allows
us to:

 Start with a desired postcondition

* Propagate backwards to precondition P that
must hold

* Verify that P = wp(C, Q)

© Sergey Mechtaev (UCL) 2019

21

Weakest Precondition
Computation

» Assignment
wp(x = a,Q) = Qla/x]
e Sequence:
wp(Cy; €2, Q) = wp(Cy,wp(Cy, Q))
» Conditional:
wp(if b then C, else C,, Q) =
(b = Wp(Cl) Q)) A (_'b = Wp(CZJ Q))

© Sergey Mechtaev (UCL) 2019

22

Weakest Precondition for
Loops

* Equivalent:
while b do c if b then c; while b do c else skip

- wp(if b then c; while b do c else skip, Q) = (b -
wp(c; while b do c, Q)) A (=b - Q) =
(b — Wp(c, wp(while b do c, Q))) A (=b - Q) =

(b - wp(c,wp(if b then c; while b do c else skip,(Q))) A
(=b = Q)

* Infinite unrolling...

© Sergey Mechtaev (UCL) 2019 23

Approximate \Weakest
Precondition

* In general, we can’t always compute wp for loops

* Instead, we’ll approximate it with help from
annotations

* Now we’ll assume loops have the syntax:
while b do {[} c

* | is a loop invariant provided by the programmer

* The approximate wp for while will still be a valid
precondition

 But it may not be the weakest precondition: even if
{P} while b do c {Q} is valid, it might not be that:
P = wp(while {/} b doc, Q)

© Sergey Mechtaev (UCL) 2019 24

Approximate wp: While Loop

* |If we define
wp(while {I}bdo C,Q) = I

 Then we still need to show that
« | A =b establishes Q
* | is a loop invariant

© Sergey Mechtaev (UCL) 2019

25

Checking Verification

Condition

P} C 103

Verify that for all inputs P = wp(C, Q)
Check satisfiability of VC: —(P = wp(C, Q))

VC

SMT Solver

——> SAT or UNSAT

© Sergey Mechtaev (UCL) 2019

26

	Default Section
	Slide 1: Verification
	Slide 2: Formal Verification
	Slide 3: Applications
	Slide 4: Hoare Triple
	Slide 5: Partial Correctness
	Slide 6: Total Correctness
	Slide 7: Examples
	Slide 8: Poll: Is the following a valid Hoare triple?
	Slide 9: Hoare Logic: Assignments
	Slide 10: Hoare Logic: Strengthening
	Slide 11: Hoare Logic: Weakening
	Slide 12: Hoare Logic: Composition
	Slide 13: Example: proving correctness of swap
	Slide 14: Hoare Logic: Conditional
	Slide 15: Hoare Logic: While Loop
	Slide 16: Example: loop invariant
	Slide 17: Example: loop invariant
	Slide 18: Java Modeling Language (JML)
	Slide 19: Weakest Precondition
	Slide 20: Strongest Postcondition
	Slide 21: Verification Condition
	Slide 22: Weakest Precondition Computation
	Slide 23: Weakest Precondition for Loops
	Slide 24: Approximate Weakest Precondition
	Slide 25: Approximate wp: While Loop
	Slide 26: Checking Verification Condition

