
© Sergey Mechtaev (UCL) 2019

Verification

Sergey Mechtaev

Peking University

mechtaev@pku.edu.cn

1

© Sergey Mechtaev (UCL) 2019

Formal Verification

Definition. The act of proving or disproving the
correctness of intended algorithms underlying a
system with respect to a certain formal
specification or property.

2

Verifier
Program

Specification
Right or wrong

© Sergey Mechtaev (UCL) 2019

Applications

• Safety-critical systems (e.g. medical software,
nuclear reactor controllers, autonomous
vehicles)

• Core system components (e.g. device drivers)

• Security (e.g. ATM software, cryptographic
algorithms)

• Hardware verification (e.g. processors)

3

© Sergey Mechtaev (UCL) 2019

Hoare Triple

• C is a program

• P and Q are predicates over program variables

• Hoare triple: given a state that satisfies
preconditions P, executing a program C results
in a state that satisfies postconditions Q:

𝑃 𝐶 {𝑄}

• Example: 𝑥 ≥ 0 𝑥 ≔ 𝑥 + 1 {𝑥 > 0}

4

© Sergey Mechtaev (UCL) 2019

Partial Correctness

• The meaning of 𝑃 𝐶 𝑄 is as follows:
• If we begin executing c in a state satisfying P,

• and if C terminates,

• then its final state will satisfy Q

• The specification says nothing about:
• Executions that do not terminate (i.e., diverge)

• Executions that do not begin in P

• Goal of verification: prove that 𝑃 𝐶 {𝑄} is valid

5

© Sergey Mechtaev (UCL) 2019

Total Correctness

• Total correctness is a stronger statement,
written:

𝑃 𝐶 [𝑄]

• The meaning of 𝑃 𝐶 [𝑄] is:
• If we begin executing C in a state satisfying P,

• then c terminates,

• and its final state will satisfy Q

• Total correctness introduces another obligation
for verification

6

© Sergey Mechtaev (UCL) 2019

Examples

• {𝑡𝑟𝑢𝑒} 𝐶 {𝑄} – if C terminates, then Q holds

• [𝑡𝑟𝑢𝑒] 𝐶 [𝑄] – C terminates, and Q always
holds after

• [𝑃] 𝐶 [𝑡𝑟𝑢𝑒] – if C starts in P, then C terminates

• [𝑡𝑟𝑢𝑒] 𝐶 𝑡𝑟𝑢𝑒 – C terminates

• {𝑥 > 0} 𝐰𝐡𝐢𝐥𝐞 0 < 𝑥 𝐝𝐨 𝑥 ∶= 𝑥 + 1 {𝑓𝑎𝑙𝑠𝑒} –
C does not terminate when starting in x > 0

• {𝑡𝑟𝑢𝑒} 𝐶 {𝑓𝑎𝑙𝑠𝑒} – C does not terminate

7

© Sergey Mechtaev (UCL) 2019

Poll: Is the following a valid
Hoare triple?

• 𝑥 = 2 𝐰𝐡𝐢𝐥𝐞 𝑥 > 0 𝐝𝐨 𝑥 ∶= 𝑥 − 1{𝑥 = 0}

• {𝑥 = 0 ∧ 𝑦 = 1} 𝑥 ∶= 𝑥 + 1 {𝑥 = 1 ∧ 𝑦 = 2}

• 𝑡𝑟𝑢𝑒 𝐰𝐡𝐢𝐥𝐞 𝑥 > 0 𝐝𝐨 𝑥 ∶= 𝑥 − 1 {𝑥 ≤ 0}

• 𝑡𝑟𝑢𝑒 𝐰𝐡𝐢𝐥𝐞 𝑥 > 0 𝐝𝐨 𝑥 ∶= 𝑥 + 1 [𝑥 ≤ 0]

8

© Sergey Mechtaev (UCL) 2019

Hoare Logic: Assignments

• Hoare Logic is a logic for deriving new triples
from existing ones

• The rule for assignment statements:

ASGN
{𝑄[𝑎/𝑥]} 𝑥 ∶= 𝑎{𝑄}

• Read 𝑄[𝑎/𝑥] as “Q with a substituted for x”

• Examples:
• {1 = 𝑦} 𝑥 ∶= 1 {𝑥 = 𝑦}

• {𝑥 + 1 = 𝑛} 𝑥 ∶= 𝑥 + 1 {𝑥 = 𝑛}

9

© Sergey Mechtaev (UCL) 2019

Hoare Logic: Strengthening

• The rule for precondition strengthening:

PRE
𝑃′ 𝐶 𝑄 𝑃 ⇒ 𝑃′

𝑃 𝐶{𝑄}

• Example: proving that {𝑡𝑟𝑢𝑒} 𝑥 ∶= 1 {𝑥 = 1}

PRE
ASGN

1 = 1 𝑥 ∶= 1{𝑥 = 1}
𝑡𝑟𝑢𝑒 ⇒ 1 = 1

𝑡𝑟𝑢𝑒 𝑥 ≔ 1{𝑥 = 1}

10

© Sergey Mechtaev (UCL) 2019

Hoare Logic: Weakening

• The rule for weakening the postcondition:

POST
𝑃 𝐶 𝑄′ 𝑄′ ⇒ 𝑄

𝑃 𝐶{𝑄}

• The rule for consequence (combines PRE and
POST):

CONSEQ
𝑃 ⇒ 𝑃′ 𝑃′ 𝐶 𝑄′ 𝑄′ ⇒ 𝑄

𝑃 𝐶{𝑄}

11

© Sergey Mechtaev (UCL) 2019

Hoare Logic: Composition

• Given triples for 𝐶1 and 𝐶2 , this gives us one
for 𝐶1; 𝐶2:

SEQ
𝑃 𝐶1 𝑃′ 𝑃′ 𝐶2 𝑄

𝑃 𝐶1; 𝐶2{𝑄}

12

© Sergey Mechtaev (UCL) 2019

Example: proving correctness
of swap
• ASGN: 𝑥 = 𝑥′ ∧ 𝑦 = 𝑦′ 𝑡 ∶= 𝑥 {𝑡 = 𝑥′ ∧ 𝑦 = 𝑦′}

• ASGN: 𝑡 = 𝑥′ ∧ 𝑦 = 𝑦′ 𝑥 ≔ 𝑦 {𝑡 = 𝑥′ ∧ 𝑥 = 𝑦′}

• ASGN: 𝑡 = 𝑥′ ∧ 𝑥 = 𝑦′ 𝑦 ≔ 𝑡 {𝑦 = 𝑥′ ∧ 𝑥 = 𝑦′}

• SEQ (1,2):
𝑥 = 𝑥′ ∧ 𝑦 = 𝑦′

𝑡 ∶= 𝑥; 𝑥 ∶= 𝑦
{𝑡 = 𝑥′ ∧ 𝑥 = 𝑦′}

• SEQ (3,4):
𝑥 = 𝑥′ ∧ 𝑦 = 𝑦′

𝑡 ∶= 𝑥; 𝑥 ∶= 𝑦; 𝑦 ∶= 𝑡
{𝑦 = 𝑥′ ∧ 𝑥 = 𝑦′}

13

© Sergey Mechtaev (UCL) 2019

Hoare Logic: Conditional

• Proving: 𝐢𝐟 𝐵 𝐭𝐡𝐞𝐧 𝐶1 𝐞𝐥𝐬𝐞 𝐶2

• At the beginning of the true branch, we know
that B holds, in the false branch, ¬B must hold:

IF
𝑃 ∧ 𝐵 𝐶1 𝑄 𝑃 ∧ ¬𝐵 𝐶2 𝑄

𝑃 𝐢𝐟 𝐵 𝐭𝐡𝐞𝐧 𝐶1 𝐞𝐥𝐬𝐞 𝐶2{𝑄}

14

© Sergey Mechtaev (UCL) 2019

Hoare Logic: While Loop

• To prove triples for loops, we need loop
invariant (condition that holds before the loop,
and is preserved by each iteration)

WHILE
𝑃 ∧ 𝐵 𝐶 𝑃

𝑃 𝐰𝐡𝐢𝐥𝐞 𝐵 𝐝𝐨 𝐶 𝑃 ∧ ¬𝐵

15

© Sergey Mechtaev (UCL) 2019

Example: loop invariant

• Want to prove that

𝑡𝑟𝑢𝑒
𝑟 ≔ 𝑥; 𝑞 ≔ 0;
𝐰𝐡𝐢𝐥𝐞 𝑦 ≤ 𝑟 𝐝𝐨 𝑟 ∶= 𝑟 − 𝑦; 𝑞 ≔ 𝑞 + 1
{𝑟 < 𝑦 ∧ 𝑥 = 𝑟 + (𝑞 × 𝑦)}

• Guess loop invariant:

𝑃: 𝑥 = 𝑟 + (𝑞 × 𝑦)

16

© Sergey Mechtaev (UCL) 2019

Example: loop invariant

• We are obligated to show that
𝑥 = 𝑟 + 𝑞 × 𝑦 ∧ 𝑦 ≤ 𝑟

𝑟 ≔ 𝑟 − 𝑦; 𝑞 ≔ 𝑞 + 1
{𝑥 = 𝑟 + (𝑞 × 𝑦)}

• 𝑥 = 𝑟 + 𝑞 + 1 × 𝑦 𝑞 ≔ 𝑞 + 1{𝑥 = 𝑟 + 𝑞 × 𝑦}

• {𝑥 = 𝑟 − 𝑦 + (𝑞 + 1) × 𝑦}𝑟: = 𝑟 − 𝑦{𝑥 = 𝑟 +
(𝑞 + 1) × 𝑦}

• 𝑥 = 𝑟 + 𝑞 × 𝑦 ∧ 𝑦 ≤ 𝑟 ⇒
𝑥 = 𝑟 − 𝑦 + (𝑞 + 1) × 𝑦

17

© Sergey Mechtaev (UCL) 2019

Java Modeling Language (JML)

//@ requires 0 < amount && amount + balance < MAX_
BALANCE;

//@ ensures balance == \old(balance) + amount;

public void credit(final int amount) {

this.balance += amount;

}

//@ requires 0 < amount && amount <= balance;

//@ ensures balance == \old(balance) - amount;

public void debit(final int amount) {

this.balance -= amount;

}

18

© Sergey Mechtaev (UCL) 2019

Weakest Precondition

• Given an assertion Q and program C, we’ll
describe a function:

• That is a predicate transformer: produces another
assertion

• Assertion for the corresponding precondition P for C

• P guaranteed to be the weakest such assertion

• This is the weakest precondition predicate
transformer 𝑤𝑝(𝐶, 𝑄):

• The triple {𝑤𝑝(𝐶, 𝑄)} 𝐶 {𝑄} is valid

• For any P where {𝑃} 𝑐 {𝑄} is valid, 𝑃 ⇒ 𝑤𝑝(𝑐, 𝑄)

19

© Sergey Mechtaev (UCL) 2019

Strongest Postcondition

• The strongest postcondition predicate
transformer sp(𝐶, 𝑃):

• The triple {𝑃} 𝐶 {𝑠𝑝(𝐶, 𝑃)} is valid

• For any Q where {𝑃} 𝐶 {𝑄} is valid, 𝑠𝑝(𝐶, 𝑃) ⇒ 𝑄

• Can be computed using symbolic execution
(e.g. start symbolic execution with path
condition P)

20

© Sergey Mechtaev (UCL) 2019

Verification Condition

Definition. A logical formula such that its validity
means some aspect of program correctness.

To check {𝑃}𝐶{𝑄}, weakest precondition allows
us to:

• Start with a desired postcondition

• Propagate backwards to precondition P that
must hold

• Verify that 𝑃 ⇒ 𝑤𝑝(𝐶, 𝑄)

21

© Sergey Mechtaev (UCL) 2019

Weakest Precondition
Computation

• Assignment
𝑤𝑝(𝑥 ∶= 𝑎, 𝑄) = 𝑄[𝑎/𝑥]

• Sequence:
𝑤𝑝(𝐶1; 𝐶2, 𝑄) = 𝑤𝑝(𝐶1, 𝑤𝑝(𝐶2, 𝑄))

• Conditional:
𝑤𝑝 𝐢𝐟 𝑏 𝐭𝐡𝐞𝐧 𝐶1 else 𝐶2, 𝑄 =
(𝑏 ⇒ 𝑤𝑝(𝐶1, 𝑄)) ∧ (¬𝑏 ⇒ 𝑤𝑝(𝐶2, 𝑄))

22

© Sergey Mechtaev (UCL) 2019

Weakest Precondition for
Loops

• Equivalent:
𝐰𝐡𝐢𝐥𝐞 𝑏 𝐝𝐨 𝑐 ≡ 𝐢𝐟 𝑏 𝐭𝐡𝐞𝐧 𝑐; 𝐰𝐡𝐢𝐥𝐞 𝑏 𝐝𝐨 𝑐 𝐞𝐥𝐬𝐞 𝐬𝐤𝐢𝐩

• 𝑤𝑝 𝐢𝐟 𝑏 𝐭𝐡𝐞𝐧 𝑐; 𝐰𝐡𝐢𝐥𝐞 𝑏 𝐝𝐨 𝑐 𝐞𝐥𝐬𝐞 𝐬𝐤𝐢𝐩, 𝑄 = ൫
൯

𝑏 →
 𝑤𝑝 𝑐; 𝐰𝐡𝐢𝐥𝐞 𝑏 𝐝𝐨 𝑐, 𝑄 ∧ ¬𝑏 → 𝑄 =

𝑏 → 𝑤𝑝 𝑐, 𝑤𝑝 𝐰𝐡𝐢𝐥𝐞 𝑏 𝐝𝐨 𝑐, 𝑄 ∧ ¬𝑏 → 𝑄 =

(𝑏 → 𝑤𝑝(𝑐, 𝑤𝑝(𝑖𝑓 𝑏 𝐭𝐡𝐞𝐧 𝑐; 𝐰𝐡𝐢𝐥𝐞 𝑏 𝐝𝐨 𝑐 𝐞𝐥𝐬𝐞 𝐬𝐤𝐢𝐩, 𝑄))) ∧
 (¬𝑏 → 𝑄)

• Infinite unrolling…

23

© Sergey Mechtaev (UCL) 2019

Approximate Weakest
Precondition
• In general, we can’t always compute wp for loops

• Instead, we’ll approximate it with help from
annotations

• Now we’ll assume loops have the syntax:
𝐰𝐡𝐢𝐥𝐞 𝑏 𝐝𝐨 {𝐼} 𝑐

• I is a loop invariant provided by the programmer

• The approximate wp for while will still be a valid
precondition

• But it may not be the weakest precondition: even if
{𝑃} 𝐰𝐡𝐢𝐥𝐞 𝑏 𝐝𝐨 𝑐 {𝑄} is valid, it might not be that:
𝑃 ⇒ 𝑤𝑝(𝐰𝐡𝐢𝐥𝐞 {𝐼} 𝑏 𝐝𝐨 𝑐, 𝑄)

24

© Sergey Mechtaev (UCL) 2019

Approximate wp: While Loop

• If we define
𝑤𝑝(𝐰𝐡𝐢𝐥𝐞 {𝐼} 𝑏 𝐝𝐨 𝐶, 𝑄) = 𝐼

• Then we still need to show that
• 𝐼 ∧ ¬𝑏 establishes Q

• I is a loop invariant

25

© Sergey Mechtaev (UCL) 2019

Checking Verification
Condition

𝑃 𝐶 𝑄

Verify that for all inputs 𝑃 ⇒ 𝑤𝑝(𝐶, 𝑄)

Check satisfiability of VC: ¬(𝑃 ⇒ 𝑤𝑝 𝐶, 𝑄)

26

SMT SolverVC SAT or UNSAT

	Default Section
	Slide 1: Verification
	Slide 2: Formal Verification
	Slide 3: Applications
	Slide 4: Hoare Triple
	Slide 5: Partial Correctness
	Slide 6: Total Correctness
	Slide 7: Examples
	Slide 8: Poll: Is the following a valid Hoare triple?
	Slide 9: Hoare Logic: Assignments
	Slide 10: Hoare Logic: Strengthening
	Slide 11: Hoare Logic: Weakening
	Slide 12: Hoare Logic: Composition
	Slide 13: Example: proving correctness of swap
	Slide 14: Hoare Logic: Conditional
	Slide 15: Hoare Logic: While Loop
	Slide 16: Example: loop invariant
	Slide 17: Example: loop invariant
	Slide 18: Java Modeling Language (JML)
	Slide 19: Weakest Precondition
	Slide 20: Strongest Postcondition
	Slide 21: Verification Condition
	Slide 22: Weakest Precondition Computation
	Slide 23: Weakest Precondition for Loops
	Slide 24: Approximate Weakest Precondition
	Slide 25: Approximate wp: While Loop
	Slide 26: Checking Verification Condition

