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Formal Verification

Definition. The act of proving or disproving the 
correctness of intended algorithms underlying a 
system with respect to a certain formal 
specification or property.
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Applications

• Safety-critical systems (e.g. medical software, 
nuclear reactor controllers, autonomous 
vehicles)

• Core system components (e.g. device drivers)

• Security (e.g. ATM software, cryptographic 
algorithms)

• Hardware verification (e.g. processors)
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Hoare Triple

• C is a program

• P and Q are predicates over program variables

• Hoare triple: given a state that satisfies 
preconditions P, executing a program C results 
in a state that satisfies postconditions Q:

𝑃  𝐶 {𝑄}

• Example: 𝑥 ≥ 0  𝑥 ≔ 𝑥 + 1 {𝑥 > 0}
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Partial Correctness

• The meaning of 𝑃  𝐶 𝑄  is as follows:
• If we begin executing c in a state satisfying P,

• and if C terminates,

• then its final state will satisfy Q

• The specification says nothing about:
• Executions that do not terminate (i.e., diverge)

• Executions that do not begin in P

• Goal of verification: prove that 𝑃  𝐶 {𝑄} is valid
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Total Correctness

• Total correctness is a stronger statement, 
written:

𝑃 𝐶 [𝑄]

• The meaning of 𝑃 𝐶 [𝑄] is: 
• If we begin executing C in a state satisfying P,

• then c terminates,

• and its final state will satisfy Q

• Total correctness introduces another obligation 
for verification
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Examples

• {𝑡𝑟𝑢𝑒} 𝐶 {𝑄} – if C terminates, then Q holds

• [𝑡𝑟𝑢𝑒] 𝐶 [𝑄] – C terminates, and Q always 
holds after

• [𝑃] 𝐶 [𝑡𝑟𝑢𝑒] – if C starts in P, then C terminates

• [𝑡𝑟𝑢𝑒] 𝐶 𝑡𝑟𝑢𝑒  – C terminates

• {𝑥 >  0} 𝐰𝐡𝐢𝐥𝐞 0 <  𝑥 𝐝𝐨 𝑥 ∶=  𝑥 +  1 {𝑓𝑎𝑙𝑠𝑒} – 
C does not terminate when starting in x > 0 

• {𝑡𝑟𝑢𝑒} 𝐶 {𝑓𝑎𝑙𝑠𝑒} – C does not terminate
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Poll: Is the following a valid 
Hoare triple?

• 𝑥 = 2 𝐰𝐡𝐢𝐥𝐞 𝑥 > 0 𝐝𝐨 𝑥 ∶= 𝑥 − 1{𝑥 = 0}

• {𝑥 = 0 ∧ 𝑦 = 1} 𝑥 ∶= 𝑥 + 1 {𝑥 = 1 ∧  𝑦 = 2}

• 𝑡𝑟𝑢𝑒  𝐰𝐡𝐢𝐥𝐞 𝑥 > 0 𝐝𝐨 𝑥 ∶= 𝑥 − 1 {𝑥 ≤ 0}

• 𝑡𝑟𝑢𝑒 𝐰𝐡𝐢𝐥𝐞 𝑥 > 0 𝐝𝐨 𝑥 ∶= 𝑥 + 1 [𝑥 ≤ 0]
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Hoare Logic: Assignments

• Hoare Logic is a logic for deriving new triples 
from existing ones

• The rule for assignment statements:

ASGN
{𝑄[𝑎/𝑥]} 𝑥 ∶= 𝑎{𝑄}

• Read 𝑄[𝑎/𝑥] as “Q with a substituted for x”

• Examples:
• {1 = 𝑦} 𝑥 ∶= 1 {𝑥 = 𝑦}

• {𝑥 + 1 = 𝑛} 𝑥 ∶= 𝑥 + 1 {𝑥 = 𝑛}
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Hoare Logic: Strengthening

• The rule for precondition strengthening:

PRE
𝑃′ 𝐶 𝑄 𝑃 ⇒ 𝑃′

𝑃 𝐶{𝑄}

• Example: proving that {𝑡𝑟𝑢𝑒} 𝑥 ∶= 1 {𝑥 = 1} 

PRE
ASGN

1 = 1 𝑥 ∶= 1{𝑥 = 1}
𝑡𝑟𝑢𝑒 ⇒ 1 = 1

𝑡𝑟𝑢𝑒 𝑥 ≔ 1{𝑥 = 1}
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Hoare Logic: Weakening

• The rule for weakening the postcondition:

POST
𝑃 𝐶 𝑄′ 𝑄′ ⇒ 𝑄

𝑃 𝐶{𝑄}

• The rule for consequence (combines PRE and 
POST):

CONSEQ
𝑃 ⇒ 𝑃′ 𝑃′ 𝐶 𝑄′ 𝑄′ ⇒ 𝑄

𝑃 𝐶{𝑄}
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Hoare Logic: Composition

• Given triples for 𝐶1 and 𝐶2 , this gives us one 
for 𝐶1; 𝐶2:

SEQ
𝑃 𝐶1 𝑃′ 𝑃′ 𝐶2 𝑄

𝑃 𝐶1; 𝐶2{𝑄}
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Example: proving correctness 
of swap
• ASGN: 𝑥 = 𝑥′ ∧ 𝑦 = 𝑦′  𝑡 ∶= 𝑥 {𝑡 = 𝑥′ ∧ 𝑦 = 𝑦′}

• ASGN: 𝑡 = 𝑥′ ∧ 𝑦 = 𝑦′  𝑥 ≔ 𝑦 {𝑡 = 𝑥′ ∧ 𝑥 = 𝑦′}

• ASGN: 𝑡 = 𝑥′ ∧ 𝑥 = 𝑦′  𝑦 ≔ 𝑡 {𝑦 = 𝑥′ ∧ 𝑥 = 𝑦′}

• SEQ (1,2):
𝑥 = 𝑥′ ∧ 𝑦 = 𝑦′

𝑡 ∶= 𝑥; 𝑥 ∶= 𝑦
{𝑡 = 𝑥′ ∧ 𝑥 = 𝑦′}

• SEQ (3,4):
𝑥 = 𝑥′ ∧ 𝑦 = 𝑦′

𝑡 ∶= 𝑥; 𝑥 ∶= 𝑦; 𝑦 ∶= 𝑡
{𝑦 = 𝑥′ ∧ 𝑥 = 𝑦′}
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Hoare Logic: Conditional

• Proving: 𝐢𝐟 𝐵 𝐭𝐡𝐞𝐧 𝐶1 𝐞𝐥𝐬𝐞 𝐶2

• At the beginning of the true branch, we know 
that B holds, in the false branch, ¬B must hold:

IF
𝑃 ∧ 𝐵 𝐶1 𝑄 𝑃 ∧ ¬𝐵 𝐶2 𝑄

𝑃 𝐢𝐟 𝐵 𝐭𝐡𝐞𝐧 𝐶1 𝐞𝐥𝐬𝐞 𝐶2{𝑄}
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Hoare Logic: While Loop

• To prove triples for loops, we need loop 
invariant (condition that holds before the loop, 
and is preserved by each iteration)

WHILE
𝑃 ∧ 𝐵 𝐶 𝑃

𝑃 𝐰𝐡𝐢𝐥𝐞 𝐵 𝐝𝐨 𝐶 𝑃 ∧ ¬𝐵
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Example: loop invariant

• Want to prove that 

𝑡𝑟𝑢𝑒
𝑟 ≔ 𝑥; 𝑞 ≔ 0;
𝐰𝐡𝐢𝐥𝐞 𝑦 ≤ 𝑟 𝐝𝐨 𝑟 ∶= 𝑟 − 𝑦; 𝑞 ≔ 𝑞 + 1
{𝑟 < 𝑦 ∧ 𝑥 = 𝑟 + (𝑞 × 𝑦)}

• Guess loop invariant:

𝑃:  𝑥 = 𝑟 + (𝑞 × 𝑦)
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Example: loop invariant

• We are obligated to show that
𝑥 = 𝑟 + 𝑞 × 𝑦 ∧ 𝑦 ≤ 𝑟

𝑟 ≔ 𝑟 − 𝑦; 𝑞 ≔ 𝑞 + 1
{𝑥 = 𝑟 + (𝑞 × 𝑦)}

• 𝑥 = 𝑟 + 𝑞 + 1 × 𝑦 𝑞 ≔ 𝑞 + 1{𝑥 = 𝑟 + 𝑞 × 𝑦}

• {𝑥 = 𝑟 − 𝑦 + (𝑞 + 1) × 𝑦}𝑟: = 𝑟 − 𝑦{𝑥 = 𝑟 +
(𝑞 + 1) × 𝑦}

• 𝑥 = 𝑟 + 𝑞 × 𝑦 ∧ 𝑦 ≤ 𝑟 ⇒
𝑥 = 𝑟 − 𝑦 + (𝑞 + 1) × 𝑦
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Java Modeling Language (JML)

//@ requires 0 < amount && amount + balance < MAX_
BALANCE;

//@ ensures balance == \old(balance) + amount;

public void credit(final int amount) {

this.balance += amount;

}

//@ requires 0 < amount && amount <= balance;

//@ ensures balance == \old(balance) - amount;

public void debit(final int amount) {

this.balance -= amount;

}
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Weakest Precondition

• Given an assertion Q and program C, we’ll 
describe a function: 

• That is a predicate transformer: produces another 
assertion 

• Assertion for the corresponding precondition P for C

• P guaranteed to be the weakest such assertion

• This is the weakest precondition predicate 
transformer 𝑤𝑝(𝐶, 𝑄):

• The triple {𝑤𝑝(𝐶, 𝑄)} 𝐶 {𝑄} is valid

• For any P where {𝑃} 𝑐 {𝑄} is valid, 𝑃 ⇒  𝑤𝑝(𝑐, 𝑄)
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Strongest Postcondition

• The strongest postcondition predicate 
transformer sp(𝐶, 𝑃):

• The triple {𝑃} 𝐶 {𝑠𝑝(𝐶, 𝑃)} is valid

• For any Q where {𝑃} 𝐶 {𝑄} is valid, 𝑠𝑝(𝐶, 𝑃)  ⇒  𝑄

• Can be computed using symbolic execution 
(e.g. start symbolic execution with path 
condition P)
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Verification Condition

Definition. A logical formula such that its validity 
means some aspect of program correctness.

To check {𝑃}𝐶{𝑄}, weakest precondition allows 
us to:

• Start with a desired postcondition

• Propagate backwards to precondition P that 
must hold

• Verify that 𝑃 ⇒  𝑤𝑝(𝐶, 𝑄)
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Weakest Precondition 
Computation

• Assignment
𝑤𝑝(𝑥 ∶= 𝑎, 𝑄) = 𝑄[𝑎/𝑥]

• Sequence:
𝑤𝑝(𝐶1; 𝐶2, 𝑄)  =  𝑤𝑝(𝐶1, 𝑤𝑝(𝐶2, 𝑄))

• Conditional:
𝑤𝑝 𝐢𝐟 𝑏 𝐭𝐡𝐞𝐧 𝐶1 else 𝐶2, 𝑄 = 
(𝑏 ⇒ 𝑤𝑝(𝐶1, 𝑄))  ∧  (¬𝑏 ⇒  𝑤𝑝(𝐶2, 𝑄)) 
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Weakest Precondition for 
Loops

• Equivalent:
𝐰𝐡𝐢𝐥𝐞 𝑏 𝐝𝐨 𝑐 ≡  𝐢𝐟 𝑏 𝐭𝐡𝐞𝐧 𝑐;  𝐰𝐡𝐢𝐥𝐞 𝑏 𝐝𝐨 𝑐 𝐞𝐥𝐬𝐞 𝐬𝐤𝐢𝐩

• 𝑤𝑝 𝐢𝐟 𝑏 𝐭𝐡𝐞𝐧 𝑐;  𝐰𝐡𝐢𝐥𝐞 𝑏 𝐝𝐨 𝑐 𝐞𝐥𝐬𝐞 𝐬𝐤𝐢𝐩, 𝑄 = ൫
൯

𝑏 →
 𝑤𝑝 𝑐;  𝐰𝐡𝐢𝐥𝐞 𝑏 𝐝𝐨 𝑐, 𝑄 ∧ ¬𝑏 →  𝑄 =

𝑏 →  𝑤𝑝 𝑐, 𝑤𝑝 𝐰𝐡𝐢𝐥𝐞 𝑏 𝐝𝐨 𝑐, 𝑄 ∧ ¬𝑏 →  𝑄 = 

(𝑏 →  𝑤𝑝(𝑐, 𝑤𝑝(𝑖𝑓 𝑏 𝐭𝐡𝐞𝐧 𝑐;  𝐰𝐡𝐢𝐥𝐞 𝑏 𝐝𝐨 𝑐 𝐞𝐥𝐬𝐞 𝐬𝐤𝐢𝐩, 𝑄)))  ∧
 (¬𝑏 →  𝑄)

• Infinite unrolling…
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Approximate Weakest 
Precondition
• In general, we can’t always compute wp for loops

• Instead, we’ll approximate it with help from 
annotations

• Now we’ll assume loops have the syntax:
𝐰𝐡𝐢𝐥𝐞 𝑏 𝐝𝐨 {𝐼} 𝑐

• I is a loop invariant provided by the programmer

• The approximate wp for while will still be a valid 
precondition

• But it may not be the weakest precondition: even if 
{𝑃} 𝐰𝐡𝐢𝐥𝐞 𝑏 𝐝𝐨 𝑐 {𝑄} is valid, it might not be that: 
𝑃 ⇒  𝑤𝑝(𝐰𝐡𝐢𝐥𝐞 {𝐼} 𝑏 𝐝𝐨 𝑐, 𝑄)
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Approximate wp: While Loop

• If we define
𝑤𝑝(𝐰𝐡𝐢𝐥𝐞 {𝐼} 𝑏 𝐝𝐨 𝐶, 𝑄)  =  𝐼

• Then we still need to show that
• 𝐼 ∧  ¬𝑏 establishes Q

• I is a loop invariant
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Checking Verification 
Condition

𝑃  𝐶 𝑄

Verify that for all inputs 𝑃 ⇒  𝑤𝑝(𝐶, 𝑄)

Check satisfiability of VC: ¬(𝑃 ⇒  𝑤𝑝 𝐶, 𝑄 )
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